Plasmonic Amplification with Ultra-High Optical Gain at Room Temperature

被引:69
|
作者
Liu, Ning [1 ,2 ]
Wei, Hong [1 ,2 ]
Li, Jing [1 ,2 ]
Wang, Zhuoxian [1 ,2 ]
Tian, Xiaorui [1 ,2 ]
Pan, Anlian [3 ]
Xu, Hongxing [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Hunan Univ, Coll Phys & Microelect Sci, Changsha 410082, Hunan, Peoples R China
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
中国国家自然科学基金;
关键词
WAVE-GUIDE; CONFINEMENT;
D O I
10.1038/srep01967
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanoplasmonic devices are promising for next generation information and communication technologies because of their capability to confine light at subwavelength scale and transport signals with ultrahigh speeds. However, ohmic losses are inherent to all plasmonic devices so that further development of integrated plasmonics requires efficient in situ loss compensation of signals with a wavelength and polarization of choice. Here we show that CdSe nanobelt/Al2O3/Ag hybrid plasmonic waveguides allow for efficient broadband loss compensation of propagating hybrid plasmonic signals of different polarizations using an optical pump and probe technique. With an internal gain coefficient of 6755 cm(-1) at ambient condition, almost 100% of the propagation loss of TM-dominant plasmonic signals is compensated. From comparison with a similar photonic structure we attribute the fast-increasing gain at low pump intensity in hybrid plasmonic waveguides to the transfer across the metal-oxide-semiconductor interface of 'hot' electrons photogenerated by the pump light.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Spectral domain optical coherence tomography - Ultra-high speed, ultra-high resolution ophthalmic imaging
    Chen, TC
    Cense, B
    Pierce, MC
    Nassif, N
    Park, BH
    Yun, SH
    White, BR
    Bouma, BE
    Tearney, GJ
    de Boer, JF
    ARCHIVES OF OPHTHALMOLOGY, 2005, 123 (12) : 1715 - 1720
  • [42] Room temperature optical gain in CdSe nanorod solutions
    Link, S
    El-Sayed, MA
    JOURNAL OF APPLIED PHYSICS, 2002, 92 (11) : 6799 - 6803
  • [43] Ultra-high gain diffusion-driven organic transistor
    Torricelli, Fabrizio
    Colalongo, Luigi
    Raiteri, Daniele
    Kovacs-Vajna, Zsolt Miklos
    Cantatore, Eugenio
    NATURE COMMUNICATIONS, 2016, 7
  • [44] Fracture strength of ultra-high temperature ceramics
    Zeng, Tao
    Fang, Dai-ning
    Lu, Xia-mei
    Zhou, Fei-fei
    HIGH-PERFORMANCE CERAMICS V, PTS 1 AND 2, 2008, 368-372 : 1785 - +
  • [45] Mechanical testing of ultra-high temperature alloys
    R. Völkl
    B. Fischer
    Experimental Mechanics, 2004, 44 (2) : 121 - 127
  • [46] Mechanical testing of ultra-high temperature alloys
    Völkl, R
    Fischer, B
    EXPERIMENTAL MECHANICS, 2004, 44 (02) : 121 - 127
  • [47] Ultra-high temperature intermetallics for the third millennium
    Fairbank, GB
    Humphreys, CJ
    Kelly, A
    Jones, CN
    INTERMETALLICS, 2000, 8 (9-11) : 1091 - 1100
  • [48] Ultra-high temperature deformation in TaC and HfC
    Smith, Chase J.
    Ross, Morgan A.
    De Leon, Nicholas
    Weinberger, Christopher R.
    Thompson, Gregory B.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (16) : 5319 - 5332
  • [49] Review on ultra-high temperature boride ceramics
    Golla, Brahma Raju
    Mukhopadhyay, Amartya
    Basu, Bikramjit
    Thimmappa, Sravan Kumar
    PROGRESS IN MATERIALS SCIENCE, 2020, 111
  • [50] Cooling systems for ultra-high temperature turbines
    Yoshida, T
    HEAT TRANSFER IN GAS TURBINE SYSTEMS, 2001, 934 : 194 - 205