Integrable Nonlocal Nonlinear Schrodinger Equation

被引:699
|
作者
Ablowitz, Mark J. [1 ]
Musslimani, Ziad H. [2 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
INVERSE SCATTERING TRANSFORM;
D O I
10.1103/PhysRevLett.110.064105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new integrable nonlocal nonlinear Schrodinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contrasted with the classical nonlinear Schrodinger equation. DOI: 10.1103/PhysRevLett.110.064105
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Soliton solutions to constrained nonlocal integrable nonlinear Schrodinger hierarchies of type (-λ,λ)
    Ma, Wen-Xiu
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (06)
  • [32] Integrable nonlocal vector nonlinear Schrodinger equation with self-induced parity-time-symmetric potential
    Sinha, Debdeep
    Ghosh, Pijush K.
    PHYSICS LETTERS A, 2017, 381 (03) : 124 - 128
  • [33] Higher-order rational solutions for a new integrable nonlocal fifth-order nonlinear Schrodinger equation
    Yang, Yunqing
    Wang, Xin
    Cheng, Xueping
    WAVE MOTION, 2018, 77 : 1 - 11
  • [34] Degenerate and non-degenerate solutions of PT-symmetric nonlocal integrable discrete nonlinear Schrodinger equation
    Hanif, Y.
    Saleem, U.
    PHYSICS LETTERS A, 2020, 384 (32)
  • [35] The Soliton Solutions and Long-Time Asymptotic Analysis for an Integrable Variable Coefficient Nonlocal Nonlinear Schrodinger Equation
    Chen, Guiying
    Xin, Xiangpeng
    Zhang, Feng
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [36] INVARIANT MEASURES FOR INTEGRABLE SPIN CHAINS AND AN INTEGRABLE DISCRETE NONLINEAR SCHRODINGER EQUATION
    Angelopoulos, Yannis
    Killip, Rowan
    Visan, Monica
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 135 - 163
  • [37] ON A PERIODIC PROBLEM FOR THE NONLINEAR NONLOCAL SCHRODINGER-EQUATION
    KAIKINA, EI
    SHISHMAREV, IA
    DIFFERENTIAL EQUATIONS, 1993, 29 (11) : 1733 - 1736
  • [38] Nonintegrable spatial discrete nonlocal nonlinear schrodinger equation
    Ji, Jia-Liang
    Xu, Zong-Wei
    Zhu, Zuo-Nong
    CHAOS, 2019, 29 (10)
  • [39] Nondegenerate soliton dynamics of nonlocal nonlinear Schrodinger equation
    Geng, Kai-Li
    Zhu, Bo-Wei
    Cao, Qi-Hao
    Dai, Chao-Qing
    Wang, Yue-Yue
    NONLINEAR DYNAMICS, 2023, 111 (17) : 16483 - 16496
  • [40] Well-posedness for the nonlocal nonlinear Schrodinger equation
    Peres de Moura, Roger
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 1254 - 1267