Fluorescence blinking of single major light-harvesting complexes

被引:15
|
作者
Chmeliov, Jevgenij [1 ,2 ]
Valkunas, Leonas [1 ,2 ]
Krueger, Tjaart P. J. [3 ]
Ilioaia, Cristian [3 ,4 ]
van Grondelle, Rienk [3 ]
机构
[1] Ctr Phys Sci & Technol, Inst Phys, LT-01108 Vilnius, Lithuania
[2] Vilnius Univ, Fac Phys, Dept Theoret Phys, LT-10222 Vilnius, Lithuania
[3] Vrije Univ Amsterdam, Fac Sci, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[4] Univ Paris 11, CEA Saclay, Inst Biol & Technol Saclay, CEA,UMR CNRS 8221, F-91191 Gif Sur Yvette, France
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
基金
欧洲研究理事会;
关键词
BACTERIAL REACTION CENTERS; SELF-REGULATION PHENOMENA; PHOTOSYSTEM-II; ENERGY-DISSIPATION; QUANTUM JUMPS; INTERMITTENCY; SPECTROSCOPY; DYNAMICS; PROTEIN; MECHANISMS;
D O I
10.1088/1367-2630/15/8/085007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent time-resolved studies have revealed the switching behavior of single photosynthetic light-harvesting complexes. In this work, we suggest a conceptual diffusion-controlled model, which is able to describe essential protein dynamics underlying this switching phenomenon. The calculated blinking statistics is compared with the experimental results measured under various experimental conditions and not only reproduces the power-law behavior at intermediate times, but also follows the experimentally observed deviations from such behavior on a shorter timescale. We find that even under ordinary light-harvesting conditions, some antenna complexes are quenched and their fraction noticeably increases in a more acid environment. As a result, the lability of the protein scaffold allows the coexistence of light-harvesting and excitation-quenching states and therefore gives rise to regulatory switching known as non-photochemical quenching.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes
    Department of Physics, University of Pretoria, Pretoria
    0028, South Africa
    不详
    1081 HV, Netherlands
    不详
    121 16, Czech Republic
    arXiv, 2019,
  • [22] Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes
    Kyeyune, Farooq
    Botha, Joshua L.
    van Heerden, Bertus
    Maly, Pavel
    van Grondelle, Rienk
    Diale, Mmantsae
    Kruger, Tjaart P. J.
    NANOSCALE, 2019, 11 (32) : 15139 - 15146
  • [23] Fluorescence Mapping of PCP Light-Harvesting Complexes Coupled to Silver Nanowires
    Krajnik, B.
    Piatkowski, D.
    Olejnik, M.
    Czechowski, N.
    Hofmann, E.
    Heiss, W.
    Mackowski, S.
    ACTA PHYSICA POLONICA A, 2012, 122 (02) : 259 - 262
  • [24] Structural and functional heterogeneity in the major light-harvesting complexes of higher plants
    Walters, RG
    Horton, P
    PHOTOSYNTHESIS RESEARCH, 1999, 61 (01) : 77 - 89
  • [25] The dynamics of structural deformations of immobilized single light-harvesting complexes
    Bopp, MA
    Sytnik, A
    Howard, TD
    Cogdell, RJ
    Hochstrasser, RM
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) : 11271 - 11276
  • [26] Spectral properties of single light-harvesting complexes in bacterial photosynthesis
    Saga, Yoshitaka
    Shibata, Yutaka
    Tamiaki, Hitoshi
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2010, 11 (01) : 15 - 24
  • [27] Structural and functional heterogeneity in the major light-harvesting complexes of higher plants
    Robin G. Walters
    Peter Horton
    Photosynthesis Research, 1999, 61 : 77 - 90
  • [28] PHYCOBILISOMES - LIGHT-HARVESTING PIGMENT COMPLEXES
    GANTT, E
    BIOSCIENCE, 1975, 25 (12) : 781 - 788
  • [29] LIGHT-HARVESTING COMPLEXES OF CHROMOPHYTIC ALGA
    BERKALOFF, C
    CRYPTOGAMIE ALGOLOGIE, 1995, 16 (03) : 138 - 140
  • [30] Light-harvesting complexes of vascular plants
    V. H. R. Schmid
    Cellular and Molecular Life Sciences, 2008, 65 : 3619 - 3639