Maximal Gap Between Local and Global Distinguishability of Bipartite Quantum States

被引:3
|
作者
Correa, Willian H. G. [1 ]
Lami, Ludovico [2 ,3 ]
Palazuelos, Carlos [4 ,5 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, BR-13566590 Sao Carlos, Brazil
[2] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[3] Univ Ulm, IQST, D-89069 Ulm, Germany
[4] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[5] Inst Ciencias Matemat ICMAT, Madrid 28049, Spain
基金
欧洲研究理事会; 巴西圣保罗研究基金会;
关键词
Quantum information science; MAPS;
D O I
10.1109/TIT.2022.3186428
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove a tight and close-to-optimal lower bound on the effectiveness of local quantum measurements (without classical communication) at discriminating any two bipartite quantum states. Our result implies, for example, that any two orthogonal quantum states of a n(A) x n(B) bipartite quantum system can be discriminated via local measurements with an error probability no larger than 1/2 (1 - 1/c min{nA,nB}), where 1 <= c <= 2 root 2 is a universal constant, and our bound scales provably optimally with the local dimensions n(A), n(B). Mathematically, this is achieved by showing that the distinguishability norm parallel to . parallel to LO associated with local measurements satisfies that parallel to . parallel to <= 2 root 2 min{n(A), n(B)} parallel to.parallel to LO, where parallel to . parallel to LO, where parallel to.parallel to(1) is the trace norm.
引用
收藏
页码:7306 / 7314
页数:9
相关论文
共 50 条
  • [21] Entanglement transformation between sets of bipartite pure quantum states using local operations
    Chau, H. F.
    Fung, Chi-Hang Fred
    Li, Chi-Kwong
    Poon, Edward
    Sze, Nung-Sing
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [22] Orthogonality and distinguishability: Criterion for local distinguishability of arbitrary orthogonal states
    Chen, PX
    Li, CZ
    PHYSICAL REVIEW A, 2003, 68 (06):
  • [23] Bipartite quantum measurements with optimal single-sided distinguishability
    Czartowski, Jakub
    Zyczkowski, Karol
    QUANTUM, 2021, 5
  • [24] Local distinguishability of orthogonal quantum states with no more than one ebit of entanglement
    Li, Lv-Jun
    Guo, Fei
    Zhang, Zhi-Chao
    Wen, Qiao-Yan
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [25] Local distinguishability of generalized Bell states
    Yang, Ying-Hui
    Wang, Cai-Hong
    Yuan, Jiang-Tao
    Wu, Xia
    Zuo, Hui-Juan
    QUANTUM INFORMATION PROCESSING, 2018, 17 (02)
  • [26] Local distinguishability of generalized Bell states
    Ying-Hui Yang
    Cai-Hong Wang
    Jiang-Tao Yuan
    Xia Wu
    Hui-Juan Zuo
    Quantum Information Processing, 2018, 17
  • [27] Local distinguishability of orthogonal quantum states with multiple copies of 2 ⊗ 2 maximally entangled states
    Zhang, Zhi-Chao
    Song, Yan-Qi
    Song, Ting-Ting
    Gao, Fei
    Qin, Su-Juan
    Wen, Qiao-Yan
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [28] Distinguishability of Quantum States by Separable Operations
    Duan, Runyao
    Feng, Yuan
    Xin, Yu
    Ying, Mingsheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (03) : 1320 - 1330
  • [29] Unitary evolution and the distinguishability of quantum states
    Morley-Short, Sam
    Rosenfeld, Lawrence
    Kok, Pieter
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [30] Local unitary equivalence of arbitrary dimensional bipartite quantum states
    Zhou, Chunqin
    Zhang, Ting-Gui
    Fei, Shao-Ming
    Jing, Naihuan
    Li-Jost, Xianqing
    PHYSICAL REVIEW A, 2012, 86 (01):