Pneumatic separation and recycling of anode and cathode materials from spent lithium iron phosphate batteries

被引:37
|
作者
Bi, Haijun [1 ]
Zhu, Huabing [1 ]
Zu, Lei [1 ]
He, Shuanghua [1 ]
Gao, Yong [1 ]
Gao, Song [1 ]
机构
[1] Hefei Univ Technol, Sch Mech Engn, 193 Tunxi Rd, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium iron phosphate battery; recycling; pneumatic separation; copper; aluminum; crushing; airflow velocity; PRINTED-CIRCUIT BOARDS; METALS; AVAILABILITY;
D O I
10.1177/0734242X18823939
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel approach to recycling of copper and aluminum fragments in the crushed products of spent lithium iron phosphate batteries was proposed to achieve their eco-friendly processing. The model of pneumatic separation that determines the optimal airflow velocity was established using aerodynamics. The influence of the airflow velocity, and the density and thickness, and their ratios, of the aluminum and copper fragments on pneumatic separation were evaluated. The results show that the optimal airflow velocities of copper and aluminum fragments with and without the electrode materials are 3.27m/s and 1.67m/s, respectively. The accuracy and reliability of the present model was verified using a pneumatic separation experiment. It is concluded that graded pneumatic separation is unnecessary for the crushed particle size more than 9 mm. The experimentally determined optimal airflow velocity of the copper and aluminum fragments with and without the electrode materials is 3.3m/s and 1.7m/s, respectively. The mass fractions of the copper and aluminum fragments upon removal of the electrode materials after pneumatic separation are 97% and 96%, respectively, and both with the electrode material achieve 97.0%. The theoretically obtained optimal airflow velocities have good agreements with the experimentally obtained ones.
引用
收藏
页码:374 / 385
页数:12
相关论文
共 50 条
  • [21] Review on full-component green recycling of spent lithium iron phosphate cathode materials: From the perspective of economy and efficiency
    Jiang, Si-qi
    Li, Xi-guang
    Gao, Qiang
    Lyu, Xian-jun
    Akanyange, Stephen Nyabire
    Jiao, Tian-tian
    Zhu, Xiang-nan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 324
  • [22] Selective recovery of lithium from spent lithium iron phosphate batteries
    Wu, Yuanzhong
    Li, Guangming
    Zhao, Siqi
    Yin, Yanwei
    Wang, Beng
    He, Wenzhi
    WASTE MANAGEMENT & RESEARCH, 2024,
  • [23] A green strategy for recycling cathode materials from spent lithium-ion batteries using glutathione
    Gu, Kunhong
    Gu, Xingyuan
    Wang, Yongwei
    Qin, Wenqing
    Han, Junwei
    GREEN CHEMISTRY, 2023, 25 (11) : 4362 - 4374
  • [24] Direct Recycling of Cathode Materials from Spent Lithium-Ion Batteries: Principles, Strategies, and Perspectives
    Li, Sihan
    Wu, Zhan
    Zhang, Miaoquan
    Xu, Jianping
    Jin, Zheyu
    Gan, Yongping
    Xu, Zhihong
    Wang, Qingli
    Zhang, Wenkui
    Xia, Yang
    He, Xinping
    Zhang, Jun
    CHEMISTRY-A EUROPEAN JOURNAL, 2025,
  • [25] Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production
    Shen, Yafei
    Journal of Power Sources, 2022, 528
  • [26] A Sustainable Process for the Recovery of Anode and Cathode Materials Derived from Spent Lithium-Ion Batteries
    Zhang, Guangwen
    Du, Zhongxing
    He, Yaqun
    Wang, Haifeng
    Xie, Weining
    Zhang, Tao
    SUSTAINABILITY, 2019, 11 (08):
  • [27] A Comprehensive Review on Reductive Recycling of Cathode Materials of Spent Lithium-Ion Batteries
    Li, Yiran
    Cai, Junhui
    Wang, Jiayu
    Xu, Shengnv
    Li, Yanjuan
    He, Wei
    Wang, Zhanzhan
    Yang, Shun
    Yan, Xiao
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (35)
  • [28] Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production
    Shen, Yafei
    JOURNAL OF POWER SOURCES, 2022, 528
  • [29] Recycling Spent Lithium Ion Batteries and Separation of Cathode Active Materials: Structural Stability, Morphology Regularity, and Waste Management
    Jena, Kishore K.
    Alfantazi, Akram
    Choi, Daniel S.
    Liao, Kin
    Mayyas, Ahmad
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (08) : 3483 - 3490
  • [30] Influence of pretreatments on the surface charge of anode and cathode materials in spent lithium-ion batteries- a key point for recycling
    Nazari, Sabereh
    Su, Pengxin
    Li, Jinlong
    He, Yaqun
    Duan, Chenlong
    Chelgani, Saeed Chehreh
    APPLIED SURFACE SCIENCE ADVANCES, 2025, 26