Rydberg atom quantum technologies

被引:229
|
作者
Adams, C. S. [1 ]
Pritchard, J. D. [2 ]
Shaffer, J. P. [3 ]
机构
[1] Univ Durham, Dept Phys, Rochester Bldg,South Rd, Durham DH1 3LE, England
[2] Univ Strathclyde, Dept Phys, John Anderson Bldg,107 Rottenrow East, Glasgow G4 0NG, Lanark, Scotland
[3] Quantum Valley Ideas Labs, 485 West Graham Way, Waterloo, ON N2L 0A7, Canada
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
quantum technology; Rydberg atoms; quantum sensing; quantum computing; quantum optics; nonlinear optics; NONLINEAR OPTICS; SINGLE ATOMS; ELECTROMETRY; INFORMATION; COMPUTATION; GATES;
D O I
10.1088/1361-6455/ab52ef
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This topical review addresses how Rydberg atoms can serve as building blocks for emerging quantum technologies. Whereas the fabrication of large numbers of artificial quantum systems with the uniformity required for the most attractive applications is difficult if not impossible, atoms provide stable quantum systems which, for the same species and isotope, are all identical. Whilst atomic ground states provide scalable quantum objects, their applications are limited by the range over which their properties can be varied. In contrast, Rydberg atoms offer strong and controllable atomic interactions that can be tuned by selecting states with different principal quantum number or orbital angular momentum. In addition Rydberg atoms are comparatively long-lived, and the large number of available energy levels and their separations allow coupling to electromagnetic fields spanning over 6 orders of magnitude in frequency. These features make Rydberg atoms highly desirable for developing new quantum technologies. After giving a brief introduction to how the properties of Rydberg atoms can be tuned, we give several examples of current areas where the unique advantages of Rydberg atom systems are being exploited to enable new applications in quantum computing, electromagnetic field sensing, and quantum optics.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Rydberg-atom-based scheme of nonadiabatic geometric quantum computation
    Zhao, P. Z.
    Cui, Xiao-Dan
    Xu, G. F.
    Sjoqvist, Erik
    Tong, D. M.
    PHYSICAL REVIEW A, 2017, 96 (05)
  • [32] Bulk and boundary quantum phase transitions in a square Rydberg atom array
    Kalinowski, Marcin
    Samajdar, Rhine
    Melko, Roger G.
    Lukin, Mikhail D.
    Sachdel, Subir
    Choi, Soonwon
    PHYSICAL REVIEW B, 2022, 105 (17)
  • [33] Quantum optimization of maximum independent set using Rydberg atom arrays
    Ebadi, S.
    Keesling, A.
    Cain, M.
    Wang, T. T.
    Levine, H.
    Bluvstein, D.
    Semeghini, G.
    Omran, A.
    Liu, J-G
    Samajdar, R.
    Luo, X-Z
    Nash, B.
    Gao, X.
    Barak, B.
    Farhi, E.
    Sachdev, S.
    Gemelke, N.
    Zhou, L.
    Choi, S.
    Pichler, H.
    Wang, S-T
    Greiner, M.
    Vuletic, V.
    Lukin, M. D.
    SCIENCE, 2022, 376 (6598) : 1209 - +
  • [34] Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators
    Surace, Federica M.
    Mazza, Paolo P.
    Giudici, Giuliano
    Lerose, Alessio
    Gambassi, Andrea
    Dalmonte, Marcello
    PHYSICAL REVIEW X, 2020, 10 (02)
  • [35] Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators
    Kim, Hyosub
    Park, YeJe
    Kim, Kyungtae
    Sim, H-S
    Ahn, Jaewook
    PHYSICAL REVIEW LETTERS, 2018, 120 (18)
  • [36] Approaching the standard quantum limit of a Rydberg-atom microwave electrometer
    Tu, Hai-Tao
    Liao, Kai-Yu
    Wang, Hong-Lei
    Zhu, Yi-Fei
    Qiu, Si-Yuan
    Jiang, Hao
    Huang, Wei
    Bian, Wu
    Yan, Hui
    Zhu, Shi-Liang
    SCIENCE ADVANCES, 2024, 10 (51):
  • [38] Rydberg atom-ion collisions: Quantum theory of intrashell transitions
    Kazansky, AK
    Ostrovsky, VN
    PHYSICAL REVIEW LETTERS, 1996, 77 (15) : 3094 - 3097
  • [39] The 2-level Rydberg atom: The electron of cavity quantum electrodynamics
    Bullough, RK
    ELECTRON, 1998, : 289 - 292
  • [40] An effective quantum defect theory for the diamagnetic spectrum of a barium Rydberg atom
    李波
    刘红平
    Chinese Physics B, 2013, 22 (01) : 23 - 26