High-order monotonicity-preserving compact schemes for linear scalar advection on 2-D irregular meshes

被引:7
|
作者
Tran, QH
Scheurer, B
机构
[1] IFP Energies Nouvelles, Div Informat Sci & Math Appl, F-92852 Rueil Malmaison, France
[2] CEA, DIF, F-91680 Bruyeres Le Chatel, France
关键词
D O I
10.1006/jcph.2001.6952
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the numerical solution for linear scalar advection problems, the velocity field of which may be uniform or a given function of the space variable. We would like to propose the following: (1) a new family of I-D compact explicit schemes, which preserve monotonicity while maintaining high-order accuracy in smooth regions and (2) an extension to the 2-D case of this family of schemes. which ensures good accuracy and isotropy of the computed solution even for very distorted meshes. A few theoretical results are proven, while abundant numerical tests are shown in order to illustrate the quality of the schemes at issue. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:454 / 486
页数:33
相关论文
共 50 条
  • [41] High-order schemes for 2D unsteady biogeochemical ocean models
    Ueckermann, Mattheus P.
    Lermusiaux, Pierre F. J.
    OCEAN DYNAMICS, 2010, 60 (06) : 1415 - 1445
  • [42] High-order schemes for 2D unsteady biogeochemical ocean models
    Mattheus P. Ueckermann
    Pierre F. J. Lermusiaux
    Ocean Dynamics, 2010, 60 : 1415 - 1445
  • [43] A High-Order 2-D CPITD Method for Electrically Large Waveguide Analysis
    Kang, Zhen
    Ma, Xikui
    Liu, Qi
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (02) : 83 - 85
  • [44] Numerical solution of 2-D scattering problems using high-order methods
    Hamilton, LR
    Ottusch, JJ
    Stalzer, MA
    Turley, RS
    Visher, JL
    Wandzura, SM
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (04) : 683 - 691
  • [45] Energy-preserving time high-order AVF compact finite difference schemes for nonlinear wave equations with variable coefficients
    Hou, Baohui
    Liang, Dong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 421
  • [46] Maximum-Principle-Preserving, Steady-State-Preserving and Large Time-Stepping High-Order Schemes for Scalar Hyperbolic Equations with Source Terms
    Liu, Lele
    Zhang, Hong
    Qian, Xu
    Song, Songhe
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 35 (02) : 498 - 523
  • [47] An admissibility and asymptotic preserving scheme for systems of conservation laws with source term on 2D unstructured meshes with high-order MOOD reconstruction
    Blachere, F.
    Turpault, R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 317 : 836 - 867
  • [48] High-order consistent SPH with the pressure projection method in 2-D and 3-D
    Nasar, A. M. A.
    Fourtakas, G.
    Lind, S. J.
    King, J. R. C.
    Rogers, B. D.
    Stansby, P. K.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 444
  • [49] High-order l1 finite-element interpolating schemes -: Part I:: Semi-Lagrangian linear advection
    Djoumna, G.
    Pierre, R.
    Le Roux, D. Y.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 57 (11) : 1603 - 1627
  • [50] Nondissipative and energy-stable high-order finite-difference interface schemes for 2-D patch-refined grids
    Kramer, R. M. J.
    Pantano, C.
    Pullin, D. I.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) : 5280 - 5297