XRD, impedance, and Mossbauer spectroscopy study of the Li3Fe2(PO4)3 + Fe2O3 composite for Li ion batteries

被引:7
|
作者
Orliukas, A. F. [1 ]
Kazakevicius, E. [1 ]
Reklaitis, J. [2 ]
Davidonis, R. [2 ]
Dindune, A. [3 ]
Kanepe, Z. [3 ]
Ronis, J. [3 ]
Baltrunas, D. [2 ]
Venckute, V. [1 ]
Salkus, T. [1 ]
Kezionis, A. [1 ]
机构
[1] Vilnius State Univ, Fac Phys, LT-10222 Vilnius, Lithuania
[2] Ctr Phys Sci & Technol, State Res Inst, LT-02300 Vilnius, Lithuania
[3] Riga Tech Univ, Inst Inorgan Chem, LV-2169 Salaspils, Latvia
关键词
Impedance spectroscopy; Mossbauer spectroscopy; Hyperfine interactions; Composite; Electrical conductivity; LITHIUM ION CONDUCTORS; ELECTRICAL-CONDUCTIVITY; HEMATITE; STATE; DISPERSION; FILMS;
D O I
10.1007/s11581-015-1418-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The synthesis procedure of the Li3Fe2(PO4)(3) + Fe2O3 composite is presented. The monoclinic (A type) and hematite phases were detected by X-ray diffraction after the synthesis of the composite. The structural alpha-beta (at a temperature of 460 K) and beta-gamma (at a temperature of 523 K) phase transitions in the composite were indicated by the anomalies of the electrical conductivity, dielectric permittivity, and changes of activation energies of conductivity. Two phase transitions have been detected in the Li3Fe2(PO4)(3) + Fe2O3 composite by Fe-57 Mossbauer spectroscopy: the phase transition in Li3Fe2(PO4)(3) from the paramagnetic to antiferromagnetic phase at temperature T (N) = 29.5 K and the Morin phase transition in Fe2O3 at temperature T (M) = 235 K.
引用
收藏
页码:2127 / 2136
页数:10
相关论文
共 50 条
  • [21] Ionic conductivity of isostructural crystals of the superionic conductors Li3Fe2(PO4)4 and Li3Sc2(PO4)3
    A. K. Ivanov-Shits
    Physics of the Solid State, 1997, 39 : 72 - 74
  • [22] Structure and ion transport in Li3Fe2(PO4)3 synthesized by solution combustion technique
    Vijayan, Lakshmi
    Cheruku, Rajesh
    Govindaraj, G.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (06)
  • [23] In Situ Studies of Fe4+ Stability in Li3Fe2(PO4)3 Cathodes for Li Ion Batteries (vol 162, pg A531, 2015)
    Christiansen, Ane S.
    Johnsen, Rune E.
    Norby, Poul
    Frandsen, Cathrine
    Morup, Steen
    Jensen, Soren H.
    Hansen, Kent K.
    Holtappels, Peter
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (04)
  • [24] Synthesis, characterization and application of Li3Fe2(PO4)3 nanoparticles as cathode of lithium-ion rechargeable batteries
    Karami, Hassan
    Taala, Foroozandeh
    JOURNAL OF POWER SOURCES, 2011, 196 (15) : 6400 - 6411
  • [25] On the way to the optimization of Li3Fe2(PO4)3 positive electrode materials
    Morcrette, M
    Wurm, C
    Masquelier, C
    SOLID STATE SCIENCES, 2002, 4 (02) : 239 - 246
  • [26] THERMALLY-INDUCED LITHIUM DISORDER IN LI3FE2(PO4)3
    SIGARYOV, SE
    TERZIEV, VG
    PHYSICAL REVIEW B, 1993, 48 (22): : 16252 - 16255
  • [27] AN X-RAY STRUCTURAL INVESTIGATION OF MICROTWINNING OF LI3SC2(PO4)3 AND LI3FE2(PO4)3 CRYSTALS
    KONDRATYUK, IP
    SIROTA, MI
    MAKSIMOV, BA
    MURADYAN, LA
    SIMONOV, VI
    KRISTALLOGRAFIYA, 1986, 31 (03): : 488 - 494
  • [28] In Situ Studies of Fe4+ Stability in Li3Fe2(PO4)3 Cathodes for Li Ion Batteries (vol 162, pg A531, 2015)
    Christiansen, Ane S.
    Johnsen, Rune E.
    Norby, Poul
    Frandsen, Cathrine
    Morup, Steen
    Jensen, Soren H.
    Hansen, Kent K.
    Holtappels, Peter
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) : X11 - X11
  • [29] Chromium substitution in ion exchanged Li3Fe2(PO4)3 and the effects on the electrochemical behavior as cathodes for lithium batteries
    Plylahan, N.
    Vidal-Abarca, C.
    Lavela, P.
    Tirado, J. L.
    ELECTROCHIMICA ACTA, 2012, 62 : 124 - 131
  • [30] Changes in electronic structure upon Li insertion reaction of monoclinic Li3Fe2(PO4)3
    Shirakawa, Junichi
    Nakayama, Masanobu
    Wakihara, Masataka
    Uchimoto, Yoshiharu
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (36): : 17743 - 17750