No violation of the Leibniz rule. No fractional derivative

被引:221
|
作者
Tarasov, Vasily E. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
关键词
Fractional derivative; Leibniz rule;
D O I
10.1016/j.cnsns.2013.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We demonstrate that a violation of the Leibniz rule is a characteristic property of derivatives of non-integer orders. We prove that all fractional derivatives D-alpha, which satisfy the Leibniz rule D(alpha()fg) = (D(alpha)f) g + f(D(alpha)g), should have the integer order alpha = 1, i.e. fractional derivatives of non-integer orders cannot satisfy the Leibniz rule. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:2945 / 2948
页数:4
相关论文
共 50 条
  • [11] A new glance on the Leibniz rule for fractional derivatives
    Sayevand, K.
    Machado, J. Tenreiro
    Baleanu, D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 62 : 244 - 249
  • [12] Leibniz type rule: ψ-Hilfer fractional operator
    Sousa, J. Vanterler da C.
    de Oliveira, E. Capelas
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 77 : 305 - 311
  • [13] Fractional q-Leibniz Rule and Applications
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : 175 - 199
  • [14] FURTHER EXTENSION OF LEIBNIZ RULE FOR FRACTIONAL DERIVATIVES
    OSLER, TJ
    SIAM REVIEW, 1971, 13 (02) : 275 - &
  • [15] An Operator Equation Generalizing the Leibniz Rule for the Second Derivative
    Koenig, Hermann
    Milman, Vitali
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR 2006-2010, 2012, 2050 : 279 - 299
  • [16] LEIBNIZ RULE FOR FRACTIONAL DERIVATIVES AND APPLICATION TO INFINITE SERIES
    OSLER, TJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 506 - &
  • [17] ON FRACTIONAL LEIBNIZ RULE FOR DIRICHLET LAPLACIAN IN EXTERIOR DOMAIN
    Georgiev, Vladimir
    Taniguchi, Koichi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) : 1101 - 1115
  • [18] Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework
    Zhang, Zhi-Yong
    Liu, Cheng-Bao
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 430
  • [19] Trust and rule.
    Sztompka, Piotr
    AMERICAN JOURNAL OF SOCIOLOGY, 2006, 112 (03) : 905 - 919
  • [20] The golden rule.
    Kelm, RS
    LIBRARY JOURNAL, 1998, 123 (17) : 101 - 101