Predicting In-Hospital-Death and Mortality Percentage Using Logistic Regression

被引:0
|
作者
Hamilton, Steven L. [1 ]
Hamilton, James R. [1 ]
机构
[1] Univ Oklahoma, Oklahoma City, OK USA
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Logistic regression is an appropriate analysis technique for this CinC Challenge problem. Derived variables from provided patient data records are screened for significance by linear stepwise regression. Screened derived variables and corresponding patient outcome data serve respectively as the predictor and response variables for logistic regression analysis. Each of the two CinC Challenge events use separate logistic regression models, and include limited investigation of non-linear effects. Short descriptions of excursions from the logistic regression approach summarize the scope of the effort.
引用
收藏
页码:489 / 492
页数:4
相关论文
共 50 条
  • [31] Predicting Bed Requirement for a Hospital Using Regression Models
    Kumar, A.
    Jiao, Roger J.
    Shim, S. J.
    IEEM: 2008 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-3, 2008, : 665 - +
  • [32] Prediction of mortality of premature neonates using neural network and logistic regression
    Rezaeian, Aramesh
    Rezaeian, Marzieh
    Khatami, Seyede Fatemeh
    Khorashadizadeh, Fatemeh
    Moghaddam, Farshid Pouralizadeh
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 13 (03) : 1269 - 1277
  • [33] Quantification of mortality risk in surgical patients using logistic regression modelling
    Tekkis, PP
    Hadjianastassiou, VG
    Poloniecki, J
    Goldhill, D
    GASTROENTEROLOGY, 2002, 122 (04) : A469 - A469
  • [34] Prediction of mortality of premature neonates using neural network and logistic regression
    Aramesh Rezaeian
    Marzieh Rezaeian
    Seyede Fatemeh Khatami
    Fatemeh Khorashadizadeh
    Farshid Pouralizadeh Moghaddam
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 1269 - 1277
  • [35] Predicting academic achievement:: Linear regression versus logistic regression
    Jiménez, MVG
    Izquierdo, JMA
    Blanco, AJ
    PSICOTHEMA, 2000, 12 : 248 - 252
  • [36] A COMPARISON OF CLASSIFICATION AND REGRESSION TREES AND LOGISTIC REGRESSION FOR PREDICTING DEATH OF OLDER LONG-TERM CARE USERS IN JAPAN
    Lin, H.
    Sasaki, N.
    Kunisawa, S.
    Otsubo, T.
    Imanaka, Y.
    VALUE IN HEALTH, 2015, 18 (07) : A383 - A383
  • [37] Comparison between traditional logistic regression and machine learning for predicting mortality in adult sepsis patients
    Wu, Hongsheng
    Liao, Biling
    Ji, Tengfei
    Ma, Keqiang
    Luo, Yumei
    Zhang, Shengmin
    FRONTIERS IN MEDICINE, 2025, 11
  • [38] The usefulness of the percentage of immature granulocytes in predicting in-hospital mortality in patients with upper gastrointestinal bleeding
    Narci, Huseyin
    Berkesoglu, Mustafa
    Ucbilek, Enver
    Ayrik, Cuneyt
    AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2021, 46 : 646 - 650
  • [39] A logistic regression model for predicting malignant pheochromocytomas
    Baohua Gao
    Yanxia Sun
    Zhongguo Liu
    Fanwei Meng
    Benkang Shi
    Yuqiang Liu
    Zhishun Xu
    Journal of Cancer Research and Clinical Oncology, 2008, 134 : 631 - 634
  • [40] A logistic regression model for predicting malignant pheochromocytomas
    Gao, Baohua
    Sun, Yanxia
    Liu, Zhongguo
    Meng, Fanwei
    Shi, Benkang
    Liu, Yuqiang
    Xu, Zhishun
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2008, 134 (06) : 631 - 634