Understanding the Formation of the Truncated Morphology of High-Voltage Spinel LiNi0.5Mn1.5O4 via Direct Atomic-Level Structural Observations

被引:47
|
作者
Chen, Bin [1 ,2 ]
Ben, Liubin [1 ,2 ]
Chen, Yuyang [1 ,2 ]
Yu, Hailong [1 ,2 ]
Zhang, Hua [1 ,2 ]
Zhao, Wenwu [1 ,2 ,3 ]
Huang, Xuejie [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Sunwoda Elect Co Ltd, Shenzhen 518018, Guangdong, Peoples R China
基金
国家重点研发计划;
关键词
LITHIUM-ION BATTERIES; TOTAL-ENERGY CALCULATIONS; NICKEL MANGANESE OXIDES; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; SURFACE RECONSTRUCTION; LIMN1.5NI0.5O4; SPINEL; THERMAL-STABILITY; TRANSITION; STATE;
D O I
10.1021/acs.chemmater.8b00769
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-voltage spinel LiNi0.5Mn1.5O4 cathode materials typically exhibit a perfect octahedral morphology; i.e., only the {111} planes are observed. However, a truncated octahedral morphology is sometimes observed with the appearance of both the {100} planes and the {111} planes. The underlying mechanism of this morphological transformation is unclear. CS corrected scanning transmission electron microscopy (STEM) techniques were used to study LiNi0.5Mn1.5O4 samples lifted by a focused ion beam (FIB) to determine the atomic-level crystal and electronic structures of the octahedral and truncated octahedral morphologies. STEM images directly show that the appearance of the {100} planes in the truncated octahedral particles of LiNi0.5Mn1.5O4 is closely associated with the atomic-level migration of Ni and Mn ions in the surface region. The STEM electron energy loss spectroscopy (EELS) confirms the presence of oxygen-deficient and Ni-rich areas, particularly in the region close to the newly formed {100} planes. The formation of the {100} planes is sensitive to residual SO42- ions on the surface originating from the sulfates used to prepare LiNi0.5Mn1.5O4. The presence of a small amount of SO42- inhibits the formation of {100} planes. First-principles computer simulations reveal that the adsorption of SO42- on the LiNi0.5Mn1.5O4 surface results in a reduction in the energy required for the formation of the {111} planes. Furthermore, the two O atoms of SO42- can form bonds, improving the stability of the low-coordinated Ni/Mn ions on the {111} planes.
引用
收藏
页码:2174 / 2182
页数:9
相关论文
共 50 条
  • [11] Advances in modification methods and the future prospects of high-voltage spinel LiNi0.5Mn1.5O4 - a review
    Fu, Tianji
    Lu, Di
    Yao, Ziqing
    Li, Yujie
    Luo, Chongyang
    Yang, Tianyan
    Liu, Shuangke
    Chen, Yufang
    Guo, Qingpeng
    Zheng, Chunman
    Sun, Weiwei
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (26) : 13889 - 13915
  • [12] Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material
    Mao, Jing
    Dai, Kehua
    Xuan, Minjie
    Shao, Guosheng
    Qiao, Ruimin
    Yang, Wanli
    Battaglia, Vincent S.
    Liu, Gao
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (14) : 9116 - 9124
  • [13] Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries
    Pieczonka, Nicholas P. W.
    Liu, Zhongyi
    Lu, Peng
    Olson, Keith L.
    Moote, John
    Powell, Bob R.
    Kim, Jung-Hyun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (31): : 15947 - 15957
  • [14] Nanoscale Ni/Mn Ordering in the High Voltage Spinel Cathode LiNi0.5Mn1.5O4
    Liu, Jue
    Huq, Ashfia
    Moorhead-Rosenberg, Zachary
    Manthiram, Arumugam
    Page, Katharine
    CHEMISTRY OF MATERIALS, 2016, 28 (19) : 6817 - 6821
  • [15] Effect of Added LiBOB on High Voltage (LiNi0.5Mn1.5O4) Spinel Cathodes
    Dalavi, Swapnil
    Xu, Mengqing
    Knight, Brandon
    Lucht, Brett L.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (02) : A28 - A31
  • [16] Investigation of Electrolytes Utilized for High-voltage LiNi0.5Mn1.5O4 Batteries
    Qin, Yinping
    Lin, Huan
    Liu, Yang
    Wang, Deyu
    2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING (MSREE 2017), 2017, 1890
  • [17] Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes
    Song, Young-Min
    Kim, Choon-Ki
    Kim, Ko-Eun
    Hong, Sung You
    Choi, Nam-Soon
    JOURNAL OF POWER SOURCES, 2016, 302 : 22 - 30
  • [18] Synthesis and characterization of the metal-doped high-voltage spinel LiNi0.5Mn1.5O4 by mechanochemical process
    Oh, Si Hyoung
    Jeon, Sang Hoon
    Cho, Won Il
    Kim, Chang Sam
    Cho, Byung Won
    JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 452 (02) : 389 - 396
  • [19] Improving Electrochemical Performance of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode by Cobalt Surface Modification
    Xue, Yuan
    Zheng, Li-Li
    Wang, Jian
    Zhou, Ji-Gang
    Yu, Fu-Da
    Zhou, Guo-Jiang
    Wang, Zhen-Bo
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (04) : 2982 - 2989
  • [20] Synthesis and characterization of the metal-doped high-voltage spinel LiNi0.5Mn1.5O4 by mechanochemical process
    Oh, Si Hyoung
    Jeon, Sang Hoon
    Cho, Won Il
    Kim, Chang Sam
    Cho, Byung Won
    Journal of Alloys and Compounds, 2008, 452 (02): : 389 - 396