HOTPOTQA: A Dataset for Diverse, Explainable Multi-hop Question Answering

被引:0
|
作者
Yang, Zhilin [1 ]
Peng, Qi [2 ]
Zhang, Saizheng [3 ]
Bengiov, Yoshua [3 ,4 ]
Cohent, William W. [5 ]
Salakhutdinov, Ruslan [1 ]
Manning, Christopher D. [2 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Univ Montreal, Mila, Montreal, PQ, Canada
[4] CIFAR, Rome, Italy
[5] Google AI, Mountain View, CA USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We introduce HOTPOTQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems' ability to extract relevant facts and perform necessary comparison. We show that HOTPOTQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions.
引用
收藏
页码:2369 / 2380
页数:12
相关论文
共 50 条
  • [31] Graphhopper: Multi-hop Scene Graph Reasoning for Visual Question Answering
    Koner, Rajat
    Li, Hang
    Hildebrandt, Marcel
    Das, Deepan
    Tresp, Volker
    Guennemann, Stephan
    SEMANTIC WEB - ISWC 2021, 2021, 12922 : 111 - 127
  • [32] Constraint-based Multi-hop Question Answering with Knowledge Graph
    Mitra, Sayantan
    Ramnani, Roshni
    Sengupta, Shubhashis
    2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, NAACL-HLT 2022, 2022, : 280 - 288
  • [33] An Experimental Study of Neural Approaches to Multi-Hop Inference in Question Answering
    Jimenez, Patricia
    Corchuelo, Rafael
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2022, 32 (04)
  • [34] Translational relation embeddings for multi-hop knowledge base question answering
    Li, Ziyan
    Wang, Haofen
    Zhang, Wenqiang
    JOURNAL OF WEB SEMANTICS, 2022, 74
  • [35] A question-guided multi-hop reasoning graph network for visual question answering
    Xu, Zhaoyang
    Gu, Jinguang
    Liu, Maofu
    Zhou, Guangyou
    Fu, Haidong
    Qiu, Chen
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (02)
  • [36] Multi-hop community question answering based on multi-aspect heterogeneous graph
    Wu, Yongliang
    Yin, Hu
    Zhou, Qianqian
    Liu, Dongbo
    Wei, Dan
    Dong, Jiahao
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (01)
  • [37] QA4QG: USING QUESTION ANSWERING TO CONSTRAIN MULTI-HOP QUESTION GENERATION
    Su, Dan
    Xu, Peng
    Fung, Pascale
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8232 - 8236
  • [38] Multi-hop knowledge graph question answering based on deformed graph matching
    Li X.
    Fang Q.
    Hu J.
    Qian S.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (02): : 529 - 534
  • [39] A dynamic graph expansion network for multi-hop knowledge base question answering
    Wu, Wenqing
    Zhu, Zhenfang
    Qi, Jiangtao
    Wang, Wenling
    Zhang, Guangyuan
    Liu, Peiyu
    NEUROCOMPUTING, 2023, 515 : 37 - 47
  • [40] ELECTRA-based graph network model for multi-hop question answering
    Zhu, Pengxuan
    Yuan, Yuan
    Chen, Lei
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2023, 61 (03) : 819 - 834