A simple method for producing bio-based anode materials for lithium-ion batteries

被引:42
|
作者
Sagues, William J. [1 ,2 ,3 ]
Yang, Junghoon [4 ]
Monroe, Nicholas [1 ]
Han, Sang-Don [4 ]
Vinzant, Todd [3 ]
Yung, Matthew [3 ]
Jameel, Hasan [1 ]
Nimlos, Mark [3 ]
Park, Sunkyu [1 ]
机构
[1] North Carolina State Univ, Dept Forest Biomat, 2820 Faucette Dr, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Dept Biol & Agr Engn, 3110 Faucette Dr, Raleigh, NC 27695 USA
[3] FTLB Lab, Natl Renewable Energy Lab, 16253 Denver West Pkwy, Golden, CO 80401 USA
[4] Natl Renewable Energy Lab, Mat & Chem Sci & Technol Directorate, 15013 Denver West Pkwy, Golden, CO 80401 USA
关键词
NATURAL GRAPHITE; SURFACE-CHEMISTRY; ELECTRODES; CONVERSION; BIOCHAR;
D O I
10.1039/d0gc02286a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple and scalable method for producing graphite anode material for lithium-ion batteries is developed and demonstrated. A low-cost, earth abundant iron powder is used to catalyze the conversion of softwood, hardwood, cellulose, glucose, organosolv lignin, and hydrolysis lignin biomaterials to crystalline graphite at relatively low temperatures (<1200 degrees C). Biographite materials are characterized and compared based on graphite mass yield, graphite crystallite size, degree of graphitization, graphite uniformity, iron catalyst distribution, and graphite morphology. Particle size, heating method, and intermediate liquid phase formation, among other factors, play important roles in the graphitization process. Molten eutectic iron carbides solubilize disordered carbon and precipitate graphite platelets of crystallite size comparable to commercial graphite. Softwood-derived biographite is of the highest quality and demonstrates excellent electrochemical performance as anode material in a lithium-ion coin cell with 89% capacity retention over 100 cycles and > 99% coulombic efficiency.
引用
收藏
页码:7093 / 7108
页数:16
相关论文
共 50 条
  • [31] Effect of Microcracks on Graphite Anode Materials for Lithium-Ion Batteries
    Ma, Jingbo
    Li, Yanan
    Gao, Hong
    Chen, Qianlin
    Yang, Min
    CHEMISTRYSELECT, 2020, 5 (19): : 5742 - 5747
  • [32] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Fei Dou
    Liyi Shi
    Guorong Chen
    Dengsong Zhang
    Electrochemical Energy Reviews, 2019, 2 : 149 - 198
  • [33] Advances of lithium-ion batteries anode materials-A review
    Hossain, Md. Helal
    Chowdhury, Mohammad Asaduzzaman
    Hossain, Nayem
    Islam, Md. Aminul
    Mobarak, Md Hosne
    CHEMICAL ENGINEERING JOURNAL ADVANCES, 2023, 16
  • [34] Designing interface coatings on anode materials for lithium-ion batteries
    Dang, Hao
    Peng, Yuanyou
    Wang, Lu
    Li, Xiangye
    Ran, Fen
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [35] Recent developments in advanced anode materials for lithium-ion batteries
    Chang, Hui
    Wu, Yu-Rong
    Han, Xiao
    Yi, Ting-Fen
    ENERGY MATERIALS, 2021, 1 (01):
  • [36] Anode materials for lithium-ion batteries with nickel, copper and carbon
    Olszewska, Danuta
    Borowski, Gabriel
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2025, 19 (03) : 121 - 133
  • [37] Intrinsic characteristics of cathode and anode materials for lithium-ion batteries
    P. E. Aleksandrov
    A. I. Anurova
    M. E. Petropavlovskii
    V. S. Kotlyar
    S. V. Zaitsev
    Russian Journal of Applied Chemistry, 2007, 80 : 1331 - 1334
  • [38] Review of metal oxides as anode materials for lithium-ion batteries
    Du, Jiakai
    Li, Qingmeng
    Chai, Jiali
    Jiang, Lei
    Zhang, Qianqian
    Han, Ning
    Zhang, Wei
    Tang, Bohejin
    DALTON TRANSACTIONS, 2022, 51 (25) : 9584 - 9590
  • [39] Recent progress of advanced anode materials of lithium-ion batteries
    Cheng, Hui
    Shapter, Joseph G.
    Li, Yongying
    Gao, Guo
    Journal of Energy Chemistry, 2021, 57 : 451 - 468
  • [40] Recent progress of advanced anode materials of lithium-ion batteries
    Hui Cheng
    Joseph G.Shapter
    Yongying Li
    Guo Gao
    Journal of Energy Chemistry, 2021, 57 (06) : 451 - 468