Detecting critical configuration of six points

被引:0
|
作者
Wu, YH [1 ]
Hu, ZY [1 ]
机构
[1] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100080, Peoples R China
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When space points and camera optical center lie on a twisted cubic, no matter how many corresponding pairs there are from space points to their image points, camera projection matrix cannot be uniquely determined, in other words, the configuration of camera and space points in this case is critical for camera parameter estimation. In practice, it is important to detect; this critical configuration before the estimated camera parameters are used. In this work, a new method is introduced to detect this critical configuration, which is based on an effective criterion function constructed from an invariant relationship between six space points and their corresponding image points. The advantage of this method is that no explicit computation on camera projection matrix or optical center is needed. Simulations show it is quite robust and stable against noise. Experiments on real data, show the criterion function can be faithfully trusted for camera parameter estimation.
引用
收藏
页码:447 / 456
页数:10
相关论文
共 50 条
  • [31] Critical points
    Hoeft, GG
    ADVANCED MATERIALS & PROCESSES, 1996, 149 (02): : 51 - 51
  • [32] CRITICAL POINTS
    Manley, Chris
    SIGHT AND SOUND, 2014, 24 (05): : 111 - 111
  • [33] Critical points
    Bernard, WJ
    ADVANCED MATERIALS & PROCESSES, 1996, 150 (02): : C40 - C40
  • [34] Critical points
    Profughi, TC
    ADVANCED MATERIALS & PROCESSES, 1995, 148 (06): : 36C - 36C
  • [35] Critical points
    Pucci, C
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2A (02): : 201 - 202
  • [36] Four points, six distances
    Giblin, Peter
    MATHEMATICAL GAZETTE, 2023, 107 (570): : 517 - 523
  • [37] Detecting and Predicting Tipping Points
    Peng, Xiaoyi
    Small, Michael
    Zhao, Yi
    Moore, Jack Murdoch
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (08):
  • [38] A NOTE ON DETECTING DOMINANT POINTS
    ANSARI, N
    DELP, EJ
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING IV, PTS 1-3, 1989, 1199 : 821 - 832
  • [39] Detecting and matching feature points
    Vincent, E
    Laganière, R
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2005, 16 (01) : 38 - 54
  • [40] Detecting Critical Points in 2D Scalar Field Ensembles Using Bayesian Inference
    Vietinghoff, Dominik
    Bottinger, Michael
    Scheuermann, Gerik
    Heine, Christian
    2022 IEEE 15TH PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS 2022), 2022, : 1 - 10