Particle swarm optimizer with C-Pg mutation

被引:0
|
作者
Fu, GJ [1 ]
Wang, SM
Chen, MJ
Li, N
机构
[1] Wuhan Univ Technol, Sch Comp, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Logist, Wuhan 430063, Peoples R China
来源
COMPUTATIONAL INTELLIGENCE AND SECURITY, PT 1, PROCEEDINGS | 2005年 / 3801卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a modified PSO algorithm, called the PSO with C-Pg mutation, or PSOWC-Pg, the algorithm adopts C-Pg mutation, the idea is to replace global optimal point gBest with disturbing point C and gBest alternately in the original formulae, the probability of using C is R. There are two methods for selecting C: stochastic method and the worst fitness method. The stochastic method selects some particle's current position x or pBest as C stochastically in each iteration loop, the worst fitness method selects the worst particle's x or the pBest of some particle with the worst fitness value as C. So, when R is small enough, the distance between C and gBest will tend towards 0, particle swarm will converge slowly and irregularly. The results of experiments show that PSOWC-Pg exhibit excellent performance for test functions.
引用
收藏
页码:638 / 644
页数:7
相关论文
共 50 条
  • [21] DMPSO: Diversity-Guided Multi-Mutation Particle Swarm Optimizer
    Tian, Dongping
    Zhao, Xiaofei
    Shi, Zhongzhi
    IEEE ACCESS, 2019, 7 : 124008 - 124025
  • [22] Heterogeneous comprehensive learning and dynamic multi- swarm particle swarm optimizer with two mutation operators
    Wang, Shengliang
    Liu, Genyou
    Gao, Ming
    Cao, Shilong
    Guo, Aizhi
    Wang, Jiachen
    INFORMATION SCIENCES, 2020, 540 (540) : 175 - 201
  • [23] Particle Swarm Optimizer with Full Information
    Liu, Yanmin
    Li, Chengqi
    Wu, Xiangbiao
    Zeng, Qingyu
    Liu, Rui
    Huang, Tao
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT I, 2016, 9771 : 644 - 650
  • [24] A new dynamic particle swarm optimizer
    Zheng, Binbin
    Li, Yuanxiang
    Shen, Xianjun
    Zheng, Bojin
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2006, 4247 : 481 - 488
  • [25] Adaptive cooperative particle swarm optimizer
    Mohammad Hasanzadeh
    Mohammad Reza Meybodi
    Mohammad Mehdi Ebadzadeh
    Applied Intelligence, 2013, 39 : 397 - 420
  • [26] An improved cooperative particle swarm optimizer
    Wang, Liying
    TELECOMMUNICATION SYSTEMS, 2013, 53 (01) : 147 - 154
  • [27] Dynamic multi-swarm particle swarm optimizer
    Liang, JJ
    Suganthan, PN
    2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2005, : 124 - 129
  • [28] Fully connected particle swarm optimizer
    Sun, Y.
    Djouani, K.
    Qi, G.
    van Wyk, B. J.
    Wang, Z.
    ENGINEERING OPTIMIZATION, 2011, 43 (07) : 801 - 812
  • [29] An improved particle swarm optimizer with momentum
    Xiang, Tao
    Wang, Jun
    Liao, Xiaofeng
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 3341 - +
  • [30] The landscape adaptive particle swarm optimizer
    Yisu, Jin
    Knowles, Joshua
    Hongmei, Lu
    Liang, Yizeng
    Kell, Douglas B.
    APPLIED SOFT COMPUTING, 2008, 8 (01) : 295 - 304