A machine learning approach to resolving incongruence in molecular phylogenies and visualization analysis

被引:0
|
作者
Han, XX [1 ]
机构
[1] Eastern Michigan Univ, Dept Math, Ypsilanti, MI 48197 USA
来源
PROCEEDINGS OF THE 2005 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY | 2005年
关键词
gene trees; species trees; self-organizing map; entropy; information visualization; clustering analysis;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The incongruence between gene trees and species trees is one of the most pervasive challenges in molecular phylogenetics. In this work, a machine learning approach is proposed to overcome this problem. In the machine learning approach, the gene data set is clustered by a self-organizing map (SOM). Then a phylogenetically informative core gene set is created by combining the maximum entropy gene from each cluster to conduct phylogenetic analysis. Using the same data set, this approach performs better than the previous random gene concatenation method. The SOM based information visualization is also employed to compare the species patterns in the phylogenetic tree constructions.
引用
收藏
页码:346 / 353
页数:8
相关论文
共 50 条
  • [31] Similarity maps - a visualization strategy for molecular fingerprints and machine-learning methods
    Sereina Riniker
    Gregory A Landrum
    Journal of Cheminformatics, 5
  • [32] Resolving Code Review Comments with Machine Learning
    Frommgen, Alexander
    Austin, Jacob
    Choy, Peter
    Ghelani, Nimesh
    Kharatyan, Lera
    Surita, Gabriela
    Khrapko, Elena
    Lamblin, Pascal
    Manzagol, Pierre-Antoine
    Revaj, Marcus
    Tabachnyk, Maxim
    Tarlow, Daniel
    Villela, Kevin
    Zheng, Daniel
    Chandra, Satish
    Maniatis, Petros
    2024 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING IN PRACTICE, ICSE-SEIP 2024, 2024, : 204 - 215
  • [33] A Machine Learning Model and Data Visualization Approach to Predict In-Hospital Sepsis
    Kan, Chin Fung Kelvin
    Kotter, Adam
    Wan, Yik-Ki Jacob
    Morgan, Keaton
    Abdelrahman, Samir
    Madaras-Kelly, Karl
    Del Fiol, Guilherme
    ANESTHESIA AND ANALGESIA, 2024, 139 (05): : 952 - 953
  • [34] Molecular phylogeny of extant equids and effects of ancestral polymorphism in resolving species-level phylogenies
    Steiner, Cynthia C.
    Mitelberg, Anna
    Tursi, Rosanna
    Ryder, Oliver A.
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2012, 65 (02) : 573 - 581
  • [35] Constructability analysis: Machine learning approach - Discussion
    Reich, Y
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1998, 12 (03) : 164 - 166
  • [36] A machine learning approach to glow curve analysis
    Kroeninger, Kevin
    Mentzel, Florian
    Theinert, Robert
    Walbersloh, Joerg
    RADIATION MEASUREMENTS, 2019, 125 : 34 - 39
  • [37] Performance analysis in SailGP: A machine learning approach
    Zentai, Benedek
    Toka, Laszlo
    INTERNATIONAL JOURNAL OF SPORTS SCIENCE & COACHING, 2025,
  • [38] A Machine Learning Approach to Triathlon Component Analysis
    Ofoghi, Bahadorreza
    Zeleznikow, John
    MacMahon, Clare
    PROCEEDINGS OF THE 8TH INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE IN SPORT (IACSS2011), 2011, : 30 - 33
  • [39] Machine learning approach to muon spectroscopy analysis
    Tula, T.
    Moller, G.
    Quintanilla, J.
    Giblin, S. R.
    Hillier, A. D.
    McCabe, E. E.
    Ramos, S.
    Barker, D. S.
    Gibson, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (19)
  • [40] Constructability analysis: Machine learning approach - Closure
    Arciszewski, T
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1998, 12 (03) : 166 - 167