Domain Adaptation for Person Re-identification on New Unlabeled Data

被引:3
|
作者
Pereira, Tiago de C. G. [1 ]
de Campos, Teofilo E. [1 ]
机构
[1] Univ Brasilia UnB, Dept Ciencia Comp, Brasilia, DF, Brazil
关键词
Domain Adaptation; Person Re-identification; Deep Learning;
D O I
10.5220/0008973606950703
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the world where big data reigns and there is plenty of hardware prepared to gather a huge amount of non structured data, data acquisition is no longer a problem. Surveillance cameras are ubiquitous and they capture huge numbers of people walking across different scenes. However, extracting value from this data is challenging, specially for tasks that involve human images, such as face recognition and person re-identification. Annotation of this kind of data is a challenging and expensive task. In this work we propose a domain adaptation workflow to allow CNNs that were trained from one domain to be applied to another domain without the need for new annotation of the target data. Our results show that domain adaptation techniques really improve the performance of the CNN when applied in the target domain.
引用
收藏
页码:695 / 703
页数:9
相关论文
共 50 条
  • [41] Unsupervised Domain Adaptation for Person Re-identification via Heterogeneous Graph Alignment
    Zhang, Minying
    Liu, Kai
    Li, Yidong
    Guo, Shihui
    Duan, Hongtao
    Long, Yimin
    Jin, Yi
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3360 - 3368
  • [42] Progressive Unsupervised Domain Adaptation for Image-based Person Re-Identification
    Yang, Mingliang
    Zhao, Jing
    Huang, Da
    Wang, Ji
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 7730 - 7736
  • [43] Heterogeneous dual network with feature consistency for domain adaptation person re-identification
    Zhou, Hua
    Kong, Jun
    Jiang, Min
    Liu, Tianshan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (05) : 1951 - 1965
  • [44] Sparse-attention augmented domain adaptation for unsupervised person re-identification
    Zhang, Wei
    Ye, Peijun
    Su, Tao
    Chen, Dihu
    PATTERN RECOGNITION LETTERS, 2025, 187 : 8 - 13
  • [45] Weakly supervised end-to-end domain adaptation for person re-identification
    Zhang, Lei
    Li, Haisheng
    Liu, Ruijun
    Wang, Xiaochuan
    Wu, Xiaoqun
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 113
  • [46] Part-aware Progressive Unsupervised Domain Adaptation for Person Re-Identification
    Yang, Fan
    Yan, Ke
    Lu, Shijian
    Jia, Huizhu
    Xie, Don
    Yu, Zongqiao
    Guo, Xiaowei
    Huang, Feiyue
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1681 - 1695
  • [47] Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline
    Sun, Wenchen
    Liu, Fangai
    Xu, Weizhi
    PROCEEDINGS OF THE 2019 5TH INTERNATIONAL CONFERENCE ON COMPUTER AND TECHNOLOGY APPLICATIONS (ICCTA 2019), 2019, : 117 - 123
  • [48] UNSUPERVISED CROSS-DOMAIN PERSON RE-IDENTIFICATION: A NEW FRAMEWORK
    Li, Da
    Li, Dangwei
    Zhang, Zhang
    Wang, Liang
    Tan, Tieniu
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1222 - 1226
  • [49] Dual-stream Reciprocal Disentanglement Learning for domain adaptation person re-identification
    Li, Huafeng
    Xu, Kaixiong
    Li, Jinxing
    Yu, Zhengtao
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [50] Logical Relation Inference and Multiview Information Interaction for Domain Adaptation Person Re-Identification
    Li, Shuang
    Li, Fan
    Li, Jinxing
    Li, Huafeng
    Zhang, Bob
    Tao, Dapeng
    Gao, Xinbo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 14770 - 14782