CANARD TRAJECTORIES IN 3D PIECEWISE LINEAR SYSTEMS

被引:18
|
作者
Prohens, Rafel [1 ]
Teruel, Antonio E. [1 ]
机构
[1] Univ Illes Balears, Dep Ciencies Matemat & Informat, Palma De Mallorca 07122, Illes Balears, Spain
关键词
Singular perturbation; slow-fast system; canard solutions; piecewise linear differential systems; slow manifold; SINGULAR PERTURBATION-THEORY; MODEL; EXISTENCE; CURVATURE; GEOMETRY;
D O I
10.3934/dcds.2013.33.4595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some results on singularly perturbed piecewise linear systems, similar to those obtained by the Geometric Singular Perturbation Theory. Unlike the differentiable case, in the piecewise linear case we obtain the global expression of the slow manifold S-epsilon As a result, we characterize the existence of canard orbits in such systems. Finally, we apply the above theory to a specific case where we show numerical evidences of the existence of a canard cycle.
引用
收藏
页码:4595 / 4611
页数:17
相关论文
共 50 条
  • [21] Bifurcations Leading to Nonlinear Oscillations in a 3D Piecewise Linear Memristor Oscillator
    Scarabello, Marluce da Cruz
    Messias, Marcelo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (01):
  • [22] Slow passage through a transcritical bifurcation in piecewise linear differential systems: Canard explosion and enhanced delay
    Perez-Cervera, A.
    Teruel, A. E.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 135
  • [23] Canard solutions in planar piecewise linear systems with three zones (vol 31, pg 173, 2016)
    Fernandez-Garcia, S.
    Desroches, M.
    Krupa, M.
    Teruel, A. E.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2016, 31 (02): : 236 - 236
  • [24] Saddle-node canard cycles in slow-fast planar piecewise linear differential systems
    Carmona, V.
    Fernandez-Garcia, S.
    Teruel, A. E.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2024, 52
  • [25] 3D meteoroid trajectories
    Sansom, Eleanor K.
    Jansen-Sturgeon, Trent
    Rutten, Mark G.
    Devillepoix, Hadrien A. R.
    Bland, Phil A.
    Howie, Robert M.
    Cox, Morgan A.
    Towner, Martin C.
    Cupak, Martin
    Hartig, Benjamin A. D.
    ICARUS, 2019, 321 : 388 - 406
  • [26] A biparametric bifurcation in 3D continuous piecewise linear systems with two zones. Application to Chua's circuit
    Freire, E.
    Ponce, E.
    Ros, J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (02): : 445 - 457
  • [27] Chaotic behaviors and coexisting homoclinic cycles in a class of 3D piecewise systems
    Xu, Wenjing
    Lu, Kai
    Zhang, Tao
    Xiang, Qiaomin
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2024, 52
  • [28] Periodic trajectories in piecewise-linear maps
    Mitrovski, CD
    Kocarev, LM
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (10): : 1244 - 1246
  • [29] The 3D quantum law of motion and the 3D quantum trajectories
    Djama, T.
    PHYSICA SCRIPTA, 2007, 76 (01) : 82 - 91
  • [30] Limit cycle bifurcation in 3D continuous piecewise linear systems with two zones. Application to Chua's circuit
    Carmona, V
    Freire, E
    Ponce, E
    Ros, J
    Torres, F
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (10): : 3153 - 3164