CANARD TRAJECTORIES IN 3D PIECEWISE LINEAR SYSTEMS

被引:18
|
作者
Prohens, Rafel [1 ]
Teruel, Antonio E. [1 ]
机构
[1] Univ Illes Balears, Dep Ciencies Matemat & Informat, Palma De Mallorca 07122, Illes Balears, Spain
关键词
Singular perturbation; slow-fast system; canard solutions; piecewise linear differential systems; slow manifold; SINGULAR PERTURBATION-THEORY; MODEL; EXISTENCE; CURVATURE; GEOMETRY;
D O I
10.3934/dcds.2013.33.4595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some results on singularly perturbed piecewise linear systems, similar to those obtained by the Geometric Singular Perturbation Theory. Unlike the differentiable case, in the piecewise linear case we obtain the global expression of the slow manifold S-epsilon As a result, we characterize the existence of canard orbits in such systems. Finally, we apply the above theory to a specific case where we show numerical evidences of the existence of a canard cycle.
引用
收藏
页码:4595 / 4611
页数:17
相关论文
共 50 条
  • [1] Generating Shilnikov chaos in 3D piecewise linear systems
    Gonzalo Barajas-Ramirez, Juan
    Franco-Lopez, Arturo
    Gonzalez-Hernandez, Hugo G.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 395
  • [2] Canard Limit Cycles for Piecewise Linear Lienard Systems with Three Zones
    Li, Shimin
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (15):
  • [3] Bifurcations from a center at infinity in 3D piecewise linear systems with two zones
    Freire, Emilio
    Ordonez, Manuel
    Ponce, Enrique
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 402
  • [4] Saddle-node bifurcation of invariant cones in 3D piecewise linear systems
    Carmona, Victoriano
    Fernandez-Garcia, Soledad
    Freire, Emilio
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (05) : 623 - 635
  • [5] Topological degree in analysis of canard-type trajectories in 3-D systems
    Pokrovskii, A.
    Rachinskii, D.
    Sobolev, V.
    Zhezherun, A.
    APPLICABLE ANALYSIS, 2011, 90 (07) : 1123 - 1139
  • [6] ON PERIODIC ORBITS OF 3D SYMMETRIC PIECEWISE LINEAR SYSTEMS WITH REAL TRIPLE EIGENVALUES
    Ponce, E.
    Ros, J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07): : 2391 - 2399
  • [7] Recovering trajectories of chaotic piecewise linear dynamical systems
    AzizAlaoui, MA
    Fedorenko, AD
    Lozi, R
    Sharkovsky, AN
    CONTROL OF OSCILLATIONS AND CHAOS - 1997 1ST INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS 1-3, 1997, : 230 - 233
  • [8] Bifurcation of Quasiperiodic Orbit in a 3D Piecewise Linear Map
    Patra, Mahashweta
    Banerjee, Soumitro
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (10):
  • [9] Reversible periodic orbits in a class of 3D continuous piecewise linear systems of differential equations
    Carmona, V.
    Fernandez-Garcia, S.
    Fernandez-Sanchez, F.
    Garcia-Medina, E.
    Teruel, A. E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (15) : 5866 - 5883
  • [10] The focus-center-limit cycle bifurcation in symmetric 3D piecewise linear systems
    Freire, E
    Ponce, E
    Ros, J
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (06) : 1933 - 1951