Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities

被引:145
|
作者
Hosseini, K. [1 ]
Mayeli, P. [2 ]
Ansari, R. [3 ]
机构
[1] Islamic Azad Univ, Rasht Branch, Dept Math, Rasht, Iran
[2] Islamic Azad Univ, Lahijan Branch, Young Researchers & Elite Club, Lahijan, Iran
[3] Univ Guilan, Dept Mech Engn, Rasht, Iran
来源
OPTIK | 2017年 / 130卷
关键词
Time-fractional Klein-Gordon equations; Quadratic and cubic nonlinearities; Conformable fractional derivative; Modified Kudryashov method; New exact solutions; FUNCTIONAL VARIABLE METHOD; 1ST INTEGRAL METHOD; FINDING EXACT-SOLUTIONS; SPATIOTEMPORAL DISPERSION; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS; OPTICAL SOLITONS;
D O I
10.1016/j.ijleo.2016.10.136
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The nonlinear time-fractional Klein-Gordon equations play an important role in describing some physical events in solid state physics, nonlinear optics, and quantum field theory. In this paper, the time-fractional Klein-Gordon equations with quadratic and cubic non-linearities in the sense of the conformable fractional derivative are solved via the modified Kudryashov method. A few new explicit exact solutions of these equations are formally constructed. Results confirm the efficiency of the modified Kudryashov method in handling the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:737 / 742
页数:6
相关论文
共 50 条
  • [31] Numerical solution of time-fractional coupled Korteweg-de Vries and Klein-Gordon equations by local meshless method
    Khan, Muhammad Nawaz
    Ahmad, Imtiaz
    Akgul, Ali
    Ahmad, Hijaz
    Thounthong, Phatiphat
    PRAMANA-JOURNAL OF PHYSICS, 2021, 95 (01):
  • [32] An accurate numerical method for solving the linear fractional Klein-Gordon equation
    Khader, M. M.
    Kumar, Sunil
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (18) : 2972 - 2979
  • [33] Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel
    Saifullah, Sayed
    Ali, Amir
    Khan, Zareen A.
    AIMS MATHEMATICS, 2022, 7 (04): : 5275 - 5290
  • [34] Numerical Solution of Time-Fractional Klein-Gordon Equation by Using the Decomposition Methods
    Jafari, Hossein
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (04):
  • [35] New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method
    Hosseini, K.
    Bekir, A.
    Ansari, R.
    OPTIK, 2017, 132 : 203 - 209
  • [36] New transform iterative method for solving some Klein-Gordon equations
    Alderremy, Aisha Abdullah
    Elzaki, Tarig M.
    Chamekh, Mourad
    RESULTS IN PHYSICS, 2018, 10 : 655 - 659
  • [37] THE NEW SUMUDU TRANSFORM ITERATIVE METHOD FOR STUDYING THE RANDOM COMPONENT TIME-FRACTIONAL KLEIN-GORDON EQUATION
    Merdan, Mehmet
    Anac, Halil
    Kesemen, Tulay
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 10 (03): : 343 - 354
  • [38] Fractional Subequation Method for Cahn-Hilliard and Klein-Gordon Equations
    Jafari, Hossein
    Tajadodi, Haleh
    Kadkhoda, Nematollah
    Baleanu, Dumitru
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [39] Solving the time-dependent Klein-Gordon and square-root Klein-Gordon equations with Krylov-subspace methods
    Geng, Lei
    Liang, Hao
    Lin, Zi-Yang
    Peng, Liang-You
    PHYSICAL REVIEW A, 2023, 107 (05)
  • [40] On a new technique for solving the nonlinear conformable time-fractional differential equations
    Hosseini, K.
    Bekir, A.
    Kaplan, M.
    Guner, O.
    OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (11)