Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities

被引:145
|
作者
Hosseini, K. [1 ]
Mayeli, P. [2 ]
Ansari, R. [3 ]
机构
[1] Islamic Azad Univ, Rasht Branch, Dept Math, Rasht, Iran
[2] Islamic Azad Univ, Lahijan Branch, Young Researchers & Elite Club, Lahijan, Iran
[3] Univ Guilan, Dept Mech Engn, Rasht, Iran
来源
OPTIK | 2017年 / 130卷
关键词
Time-fractional Klein-Gordon equations; Quadratic and cubic nonlinearities; Conformable fractional derivative; Modified Kudryashov method; New exact solutions; FUNCTIONAL VARIABLE METHOD; 1ST INTEGRAL METHOD; FINDING EXACT-SOLUTIONS; SPATIOTEMPORAL DISPERSION; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS; OPTICAL SOLITONS;
D O I
10.1016/j.ijleo.2016.10.136
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The nonlinear time-fractional Klein-Gordon equations play an important role in describing some physical events in solid state physics, nonlinear optics, and quantum field theory. In this paper, the time-fractional Klein-Gordon equations with quadratic and cubic non-linearities in the sense of the conformable fractional derivative are solved via the modified Kudryashov method. A few new explicit exact solutions of these equations are formally constructed. Results confirm the efficiency of the modified Kudryashov method in handling the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:737 / 742
页数:6
相关论文
共 50 条