Effects of CNTs on microstructure and hardness of laser welds of the CNT-reinforced magnesium composite

被引:15
|
作者
Qian, M. [1 ]
Goh, C. S. [2 ]
Sun, Y. H. [1 ]
Ng, F. L. [2 ]
机构
[1] Jilin Univ, Coll Construct Engn, Changchun 130026, Jilin, Peoples R China
[2] Singapore Inst Mfg Technol, Singapore 638075, Singapore
关键词
Nano-structures; Hardness; Microstructures; Laser welding; WALLED CARBON NANOTUBES; SIMULTANEOUS ENHANCEMENT; IRRADIATION; ALLOY; TEMPERATURE; DUCTILITY; STRENGTH; NANOSTRUCTURES; NANOCOMPOSITES; COALESCENCE;
D O I
10.1016/j.compositesa.2013.01.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A magnesium composite reinforced with 1.3 wt.% multiwall carbon nanotubes (MWCNTs) was welded using a CO2 laser. Abundant nanoscale and submicron carbon particles formed in the laser welds, owing to the coalescence of the reinforcing CNTs as the result of conjoint effect of laser irradiation and welding thermal annealing. Dense intra- and inter-granular carbon particles and carbon particle-enveloped equiaxed dendrites in the magnesium matrix constituted the characteristic weld microstructure. Lateral-irregular cellular growth originated from the weld fusion boundary and the carbon particle-enveloped equiaxed dendrites with substructure formed in the weld center. It is inferred that the CNTs affected the weld solidification mainly via retarding solidification growth rate. The gained weld hardening is primarily attributed to the local refined weld microstructure and locally denser carbon particles and MWCNTs. Lower laser fluence facilitated finer weld structure and less laser irradiation on the CNTs hence more hardening effect. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [31] Effects of CNT concentration and heat treatment on micro-hardness of Ni-P-CNTs composite coatings
    Sun, Wan Chang
    FRONTIER OF NANOSCIENCE AND TECHNOLOGY, 2011, 694 : 855 - 859
  • [32] Multiscale simulation of mechanical properties and microstructure of CNT-reinforced cement-based composites
    Wang, J. F.
    Zhang, L. W.
    Liew, K. M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 319 : 393 - 413
  • [33] A comparative analysis of thermos-mechanical behavior of CNT-reinforced composite plates: Capturing the effects of thermal shrinkage
    Huang, Xu-Hao
    Yu, Nan-ting
    Azim, Iftikhar
    Zhu, Jue
    Wu, Meng-Jing
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 38
  • [34] Isogeometric approach for buckling analysis of CNT-reinforced composite skew plates under optimal CNT-orientation
    Zhang, L. W.
    Ardestani, M. Memar
    Liew, K. M.
    COMPOSITE STRUCTURES, 2017, 163 : 365 - 384
  • [35] Effects of non-uniformity in thickness and volume fraction of agglomerated CNTs on the dynamics of a spinning CNT-reinforced nanocomposite truncated conical shell
    Amirabadi H.
    Afshari H.
    Sarafraz M.
    Rahmani S.
    Noise and Vibration Worldwide, 2024, 55 (03): : 167 - 185
  • [36] Hot corrosion behaviour of CNT-reinforced zirconium yttrium composite coating at elevated temperature
    Kumar, Sandeep
    Bhatia, Rakesh
    Singh, Hazoor
    MATERIALS TODAY-PROCEEDINGS, 2020, 28 : 1530 - 1539
  • [37] Free Vibration Responses of Functionally Graded CNT-Reinforced Composite Conical Shell Panels
    Cho, Jin-Rae
    POLYMERS, 2023, 15 (09)
  • [38] Reliability analysis and optimization of in-plane functionally graded CNT-reinforced composite plates
    Omar S. Hussein
    Sameer B. Mulani
    Structural and Multidisciplinary Optimization, 2018, 58 : 1221 - 1232
  • [39] Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading
    Zhang, L. W.
    Xiao, L. N.
    COMPOSITES PART B-ENGINEERING, 2017, 122 : 219 - 230
  • [40] Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches
    Song, Z. G.
    Zhang, L. W.
    Liew, K. M.
    COMPOSITE STRUCTURES, 2016, 158 : 92 - 100