Locally finite dimensional shift-invariant paces in rd

被引:6
|
作者
Aldroubi, A [1 ]
Sun, Q
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
关键词
fractional Sobolev spaces; Holder continuous; distributions;
D O I
10.1090/S0002-9939-02-06423-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a locally finite dimensional shift-invariant linear space of distributions must be a linear subspace of some shift-invariant space generated by finitely many compactly supported distributions. If the locally finite dimensional shift-invariant space is a subspace of the Holder continuous space C-alpha or the fractional Sobolev space L-p,L-gamma, then the superspace can be chosen to be C-alpha or L-p,L-gamma, respectively.
引用
收藏
页码:2641 / 2654
页数:14
相关论文
共 50 条
  • [21] The Structure of Finitely Generated Shift-Invariant Subspaces on Locally Compact Abelian Groups
    Seyyed Mohammad Tabatabaie
    Kazaros Kazarian
    Rajab Ali Kamyabi Gol
    Soheila Jokar
    Mediterranean Journal of Mathematics, 2021, 18
  • [22] Invariance of a Shift-Invariant Space
    Akram Aldroubi
    Carlos Cabrelli
    Christopher Heil
    Keri Kornelson
    Ursula Molter
    Journal of Fourier Analysis and Applications, 2010, 16 : 60 - 75
  • [23] NOTE ON SHIFT-INVARIANT SETS
    KRENGEL, U
    SUCHESTO.L
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02): : 694 - &
  • [24] The Structure of Finitely Generated Shift-Invariant Subspaces on Locally Compact Abelian Groups
    Tabatabaie, Seyyed Mohammad
    Kazarian, Kazaros
    Gol, Rajab Ali Kamyabi
    Jokar, Soheila
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [25] Convolution random sampling in multiply generated shift-invariant spaces of Lp(Rd)
    Jiang, Yingchun
    Li, Wan
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 12 (01)
  • [26] ANALYSIS OF SHIFT-INVARIANT RECORDING
    CATHEY, WT
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1979, 69 (10) : 1451 - 1451
  • [27] A RANGE FUNCTION APPROACH TO SHIFT-INVARIANT SPACES ON LOCALLY COMPACT ABELIAN GROUPS
    Gol, R. A. Kamyabi
    Tousi, R. Raisi
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2010, 8 (01) : 49 - 59
  • [28] An adaptive sampling method for high-dimensional shift-invariant signals
    Jiang, Yingchun
    Wei, Lusong
    Chen, Guangxi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (12) : 4529 - 4537
  • [29] Anisotropic dilations of shift-invariant subspaces and approximation properties in L2(Rd)
    Cifuentes, P.
    San Antolin, A.
    Soto-Bajo, M.
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (5-6) : 525 - 539
  • [30] SHIFT-INVARIANT AND DISTORTION-INVARIANT OBJECT RECOGNITION
    CASASENT, D
    SHARMA, V
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 442 : 47 - 55