Minimum Symbol-Error Probability Symbol-Level Precoding With Intelligent Reflecting Surface

被引:16
|
作者
Shao, Mingjie [1 ]
Li, Qiang [2 ,3 ]
Ma, Wing-Kin [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518052, Peoples R China
关键词
Precoding; Quadrature amplitude modulation; Minimization; Phase shift keying; Wireless communication; MISO communication; Downlink; Intelligent reflecting surface; symbol-level precoding; symbol-error probability; WIRELESS NETWORK;
D O I
10.1109/LWC.2020.2997653
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, the use of intelligent reflecting surface (IRS) has gained considerable attention in wireless communications. By intelligently adjusting the passive reflection angle, IRS is able to assist the base station (BS) to extend the coverage and improve spectral efficiency. This letter considers a joint symbol-level precoding (SLP) and IRS reflecting design to minimize the symbol-error probability (SEP) of the intended users in an IRS-aided multiuser MISO downlink. We formulate the SEP minimization problems to pursue uniformly good performance for all users for both QAM and PSK constellations. The resulting problem is non-convex and we resort to alternating minimization to obtain a stationary solution. Simulation results demonstrate that under the aid of IRS our proposed design indeed enhances the bit-error rate performance. In particular, the performance improvement is significant when the number of IRS elements is large.
引用
收藏
页码:1601 / 1605
页数:5
相关论文
共 50 条
  • [21] A Robust Symbol-Level Precoding Method for Multibeam Satellite Systems
    Wang, Qi
    Zhou, Wuyang
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2023, 2023
  • [22] Per-antenna Power Minimization in Symbol-Level Precoding
    Spano, Danilo
    Alodeh, Maha
    Chatzinotas, Symeon
    Ottersten, Bjorn
    2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [23] Computationally and energy efficient symbol-level precoding communications demonstrator
    Krivochiza, Jevgenij
    Merlano-Duncan, Juan Carlos
    Andrenacci, Stefano
    Chatzinotas, Symeon
    Ottersten, Bjorn
    PHYSICAL COMMUNICATION, 2018, 28 : 108 - 115
  • [24] Symbol-Level Hybrid Precoding in mmWave Multiuser MISO Systems
    Liu, Rang
    Li, Hongyu
    Li, Ming
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (09) : 1636 - 1639
  • [25] Symbol-Level Precoding for the Nonlinear Multiuser MISO Downlink Channel
    Spano, Danilo
    Alodeh, Maha
    Chatzinotas, Symeon
    Ottersten, Bjoern
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (05) : 1331 - 1345
  • [26] Joint Symbol-Level Precoding and Reflecting Designs for IRS-Enhanced MU-MISO Systems
    Liu, Rang
    Li, Ming
    Liu, Qian
    Swindlehurst, A. Lee
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (02) : 798 - 811
  • [27] An Unsupervised Deep Unfolding Framework for Robust Symbol-Level Precoding
    Mohammad, Abdullahi
    Masouros, Christos
    Andreopoulos, Yiannis
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2023, 4 : 1075 - 1090
  • [28] A Symbol-Level Optimization Method for Block Precoding in Wireless Communication
    Wang, Qi
    Zhuang, Chen
    Zhou, Wuyang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 3017 - 3031
  • [29] Analysis of symbol error rate for intelligent reflecting surface aided communications
    Xu, Lei
    Wang, Zhaorui
    Chang, Jing
    Fang, Hongyu
    Li, Xiaohui
    IET COMMUNICATIONS, 2022, 16 (01) : 84 - 90
  • [30] Modulating Data Using Reconfigurable Intelligent Surface by Symbol Level Precoding
    Cheng, Hei Victor
    Yu, TWei
    2022 INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS, ISWCS, 2022,