Direct fabrication of nano-gap electrodes by focused ion beam etching

被引:43
|
作者
Nagase, T [1 ]
Gamo, K [1 ]
Kubota, T [1 ]
Mashiko, S [1 ]
机构
[1] Natl Inst Informat & Commun Technol, Kansai Adv Res Ctr, Nishi Ku, Kobe, Hyogo 6512492, Japan
关键词
nano-gap electrode; maskless fabrication; focused ion beam; molecular electronic device;
D O I
10.1016/j.tsf.2005.07.031
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple approach to increase the reliability of nano-gap electrode fabrication techniques is presented. The method is based on maskless sputter etching of An electrodes using a focused ion beam (FIB) and in-situ monitoring of the etching steps by measuring a current fed to the An electrodes. The in-situ monitoring is crucial to form nano-gaps much narrower than a FIB spot size. By using this approach, gaps of similar to 3-6 nm are fabricated with the high yield of similar to 90%, and most of the fabricated nano-gap electrodes showed high resistances of 10 G Omega- 1 T Omega. The controllability of the fabrication steps is significantly improved by using triple-layered films consisting of top Ti, Au, and bottom adhesion Ti layers. The applicability of the fabricated nano-gap electrodes to electron transport studies of nano-sized objects is demonstrated by electrical measurement of An colloidal nano-particles. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:279 / 284
页数:6
相关论文
共 50 条
  • [31] Focused-ion-beam direct structuring of fused silica for fabrication of nano-imprinting templates
    Li, Wuxia
    Dimov, Stefan
    Lalev, Georgi
    MICROELECTRONIC ENGINEERING, 2007, 84 (5-8) : 829 - 832
  • [32] Picowatt Gas Sensing and Resistance Switching in Tunneling Nano-gap Electrodes
    Banerjee, A.
    Farhoudi, N.
    Ghosh, C.
    Mastrangelo, C. H.
    Kim, H.
    Broadbent, S. J.
    Looper, Ryan
    2016 IEEE SENSORS, 2016,
  • [33] Focused ion beam etching of GaN
    Flierl, C
    White, IH
    Kuball, M
    Heard, PJ
    Allen, GC
    Marinelli, C
    Rorison, JM
    Penty, RV
    Chen, Y
    Wang, SY
    MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR RESEARCH, 1999, 4
  • [34] Nanoscale patterning by focused ion beam enhanced etching for optoelectronic device fabrication
    Rennon, S
    Bach, L
    König, H
    Reithmaier, JP
    Forchel, A
    Gentner, JL
    Goldstein, L
    MICROELECTRONIC ENGINEERING, 2001, 57-8 : 891 - 896
  • [35] Helium focused ion beam irradiation with subsequent chemical etching for the fabrication of nanostructures
    Petrov, Yu, V
    Grigoryev, E. A.
    Baraban, A. P.
    NANOTECHNOLOGY, 2020, 31 (21)
  • [36] Fabrication of nano structures in thin membranes with focused ion beam technology
    Gadgil, V. J.
    Tong, H. D.
    Cesa, Y.
    Bennink, M. L.
    SURFACE & COATINGS TECHNOLOGY, 2009, 203 (17-18): : 2436 - 2441
  • [37] Focused Ion Beam: A Versatile Technique for the Fabrication of Nano-Devices
    Santschi, Christian
    Przybylska, Joanna
    Guillaumee, Mickael
    Vazquez-Mena, Oscar
    Brugger, Juergen
    Martin, Olivier J. F.
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2009, 46 (03): : 154 - 156
  • [38] Fabrication of Laterally-Configured Resistive Switching Device with Spin-Polarized Nano-Gap Electrodes.
    Kawakita, M.
    Okabe, K.
    Yakata, S.
    Kimura, T.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [39] Dry fabrication of microdevices by the combination of focused ion beam and cryogenic deep reactive ion etching
    Chekurov, N.
    Grigoras, K.
    Sainiemi, L.
    Peltonen, A.
    Tittonen, I.
    Franssila, S.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2010, 20 (08)
  • [40] Direct fabrication of a diffraction grating onto organic oligomer crystals by focused ion beam lithography followed by plasma etching
    Inada, Yuhi
    Yamashita, Shusuke
    Murakami, Shuya
    Takahashi, Kazuo
    Yamao, Takeshi
    Hotta, Shu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2021, 60 (12)