Object-Level Data Augmentation for Deep Learning-Based Obstacle Detection in Railways

被引:6
|
作者
Franke, Marten [1 ]
Gopinath, Vaishnavi [1 ]
Ristic-Durrant, Danijela [1 ]
Michels, Kai [1 ]
机构
[1] Univ Bremen, Inst Automat, Otto Hahn Allee,NW1, D-28359 Bremen, Germany
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 20期
关键词
object detection; data augmentation; synthetic images; railway safety; long-range obstacle detection;
D O I
10.3390/app122010625
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents a novel method for generation of synthetic images of obstacles on and near rail tracks over long-range distances. The main goal is to augment the dataset for autonomous obstacle detection (OD) in railways, by inclusion of synthetic images that reflect the specific need for long-range OD in rail transport. The presented method includes a novel deep learning (DL)-based rail track detection that enables context- and scale-aware obstacle-level data augmentation. The augmented dataset is used for retraining of a state-of-the-art CNN for object detection. The evaluation results demonstrate significant improvement of detection of distant objects by augmentation of training dataset with synthetic images.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Deep Learning-Based Man-Made Object Detection from Hyperspectral Data
    Makantasis, Konstantinos
    Karantzalos, Konstantinos
    Doulamis, Anastasios
    Loupos, Konstantinos
    ADVANCES IN VISUAL COMPUTING, PT I (ISVC 2015), 2015, 9474 : 717 - 727
  • [22] Synthetic Data of Randomly Piled, Similar Objects for Deep Learning-Based Object Detection
    Arents, Janis
    Lesser, Bernd
    Bizuns, Andis
    Kadikis, Roberts
    Buls, Elvijs
    Greitans, Modris
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 706 - 717
  • [23] Data Augmentation for Machine Learning-Based Hardware Trojan Detection at Gate-Level Netlists
    Hasegawa, Kento
    Hidano, Seira
    Nozawa, Kohei
    Kiyomoto, Shinsaku
    Togawa, Nozomu
    Proceedings - 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design, IOLTS 2021, 2021,
  • [24] Data Augmentation for Machine Learning-Based Hardware Trojan Detection at Gate-Level Netlists
    Hasegawa, Kento
    Hidano, Seira
    Nozawa, Kohei
    Kiyomoto, Shinsaku
    Togawa, Nozomu
    2021 IEEE 27TH INTERNATIONAL SYMPOSIUM ON ON-LINE TESTING AND ROBUST SYSTEM DESIGN (IOLTS), 2021,
  • [25] Realtime Object Detection via Deep Learning-based Pipelines
    Shanahan, James G.
    Dai, Liang
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2977 - 2978
  • [26] Quantitative Analysis of Deep Learning-Based Object Detection Models
    Elgazzar, Khalid
    Mostafi, Sifatul
    Dennis, Reed
    Osman, Youssef
    IEEE ACCESS, 2024, 12 : 70025 - 70044
  • [27] Object detection and recognition using deep learning-based techniques
    Sharma, Preksha
    Gupta, Surbhi
    Vyas, Sonali
    Shabaz, Mohammad
    IET COMMUNICATIONS, 2023, 17 (13) : 1589 - 1599
  • [28] Deep Learning-Based Thermal Image Reconstruction and Object Detection
    Batchuluun, Ganbayar
    Kang, Jin Kyu
    Nguyen, Dat Tien
    Pham, Tuyen Danh
    Arsalan, Muhammad
    Park, Kang Ryoung
    IEEE ACCESS, 2021, 9 : 5951 - 5971
  • [29] Deep Learning-Based Object Detection Improvement for Tomato Disease
    Zhang, Yang
    Song, Chenglong
    Zhang, Dongwen
    IEEE ACCESS, 2020, 8 : 56607 - 56614
  • [30] Deep Learning-Based Object Detection in Diverse Weather Conditions
    Ravinder, M.
    Jaiswal, Arunima
    Gulati, Shivani
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2022, 18 (01)