Cospectrality of complete bipartite graphs

被引:14
|
作者
Oboudi, Mohammad Reza [1 ,2 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 12期
关键词
spectra of graphs; measures on spectra of graphs; cospectrality of graphs; the adjacency matrix of a graph; complete bipartite graphs; SPECTRA;
D O I
10.1080/03081087.2016.1162133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Richard Brualdi proposed in [Research problems from the Aveiro workshop on graph spectra, Linear Algebra Appl. 2007; 423: 172-181] the following problem: (Problem AWGS. 4) Let G(n) and G'(n) be two non-isomorphic graphs on n vertices with spectra. lambda(1) >= lambda(2) >= ... >= lambda(n) and lambda'(1) >= lambda'(2) >= lambda'(n,) respectively. Define the distance between the spectra of G(n) and G'(n) as.(G(n), G'(n)) = n i= 1 (.i -. i) 2.. or use n i= 1 |.i -. i |... Define the cospectrality of Gn by cs(G(n)) = min{.(Gn, G'(n)) : G'(n) not isomorphic to G(n)}. Let csn = max{cs(G(n)) : Gn a graph on n vertices}. Problem A Investigate cs(G(n)) for special classes of graphs. Problem B Find a good upper bound on csn. In this paper, we study ProblemAand determine the cospectrality of all complete bipartite graphs by the Euclidian distance. More precisely, we show that for all positive integers m and n there are some positive integers r, s and a non-negative integer t such that cs(Km, n) =.(Km, n, Kr, s+ tK1), where Km, n is the complete bipartite graph with parts of sizes m and n.
引用
收藏
页码:2491 / 2497
页数:7
相关论文
共 50 条
  • [21] ON PACKINGS OF COMPLETE BIPARTITE GRAPHS
    BEINEKE, LW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 277 - &
  • [22] PAGENUMBER OF COMPLETE BIPARTITE GRAPHS
    MUDER, DJ
    WEAVER, ML
    WEST, DB
    JOURNAL OF GRAPH THEORY, 1988, 12 (04) : 469 - 489
  • [23] THE INDUCIBILITY OF COMPLETE BIPARTITE GRAPHS
    BROWN, JI
    SIDORENKO, A
    JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 629 - 645
  • [24] Decomposition of complete bipartite graphs
    VandenEynden, C
    ARS COMBINATORIA, 1997, 46 : 287 - 296
  • [25] Higher matching complexes of complete graphs and complete bipartite graphs
    Singh, Anurag
    DISCRETE MATHEMATICS, 2022, 345 (04)
  • [26] Enumeration of matchings in the incidence graphs of complete and complete bipartite graphs
    Pippenger, N
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (01) : 47 - 64
  • [27] DECOMPOSITION OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS INTO α-LABELLED TREES
    Sethuraman, G.
    Venkatesh, S.
    ARS COMBINATORIA, 2009, 93 : 371 - 385
  • [28] Complete graphs and complete bipartite graphs without rainbow path
    Li, Xihe
    Wang, Ligong
    Liu, Xiangxiang
    DISCRETE MATHEMATICS, 2019, 342 (07) : 2116 - 2126
  • [29] On the Eulerian recurrent lengths of complete bipartite graphs and complete graphs
    Jimbo, Shuji
    2014 INTERNATIONAL CONFERENCE ON MANUFACTURING, OPTIMIZATION, INDUSTRIAL AND MATERIAL ENGINEERING (MOIME 2014), 2014, 58
  • [30] The competition graphs of oriented complete bipartite graphs
    Kim, Suh-Ryung
    Lee, Jung Yeun
    Park, Boram
    Sano, Yoshio
    DISCRETE APPLIED MATHEMATICS, 2016, 201 : 182 - 190