Finite quantum groups over abelian groups of prime exponent

被引:42
|
作者
Andruskiewitsch, N
Schneider, HJ
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, CONICET, CIEM, RA-5000 Cordoba, Argentina
[2] Univ Munich, Math Inst, D-80333 Munich, Germany
关键词
D O I
10.1016/S0012-9593(01)01082-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify pointed finite-dimensional complex Hopf algebras whose group of group-like elements is abelian of prime exponent p, p > 17. The Hopf algebras we find are members of a general family of pointed Hopf algebras we construct from Dynkin diagrams. As special cases of our construction we obtain all the Frobenius-Lusztig kernels of semisimple Lie algebras and their parabolic subalgebras. An important step in the classification result is to show that all these Hopf algebras are generated by group-like and skew-primitive elements. (C) 2002 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条