Using large-scale genomics data to identify driver mutations in lung cancer: methods and challenges

被引:0
|
作者
Hudson, Andrew M. [1 ]
Wirth, Christopher [2 ,3 ]
Stephenson, Natalie L. [1 ]
Fawdar, Shameem [4 ]
Brognard, John [1 ]
Miller, Crispin J. [2 ,3 ]
机构
[1] Univ Manchester, Signalling Networks Canc Grp, Canc Res UK Manchester Inst, Manchester M20 4BX, Lancs, England
[2] Univ Manchester, Canc Res UK Manchester Inst, RNA Biol Grp, Manchester M20 4BX, Lancs, England
[3] Univ Manchester, Canc Res UK Manchester Inst, Computat Biol Support Team, Manchester M20 4BX, Lancs, England
[4] Univ Mauritius, ANDI Ctr Excellence Biomed & Biomat Res, Reduit, Mauritius
关键词
cancer genomics; challenges; driver mutation; genetic dependency screen; in silico analysis; lung cancer; SOMATIC MUTATIONS; ONCOGENE ADDICTION; TUMOR-GROWTH; PROTEIN; IDENTIFICATION; EGFR; CHEMOTHERAPY; MULTICENTER; TRIAL; GENE;
D O I
10.2217/PGS.15.60
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Lung cancer is the commonest cause of cancer death in the world and carries a poor prognosis for most patients. While precision targeting of mutated proteins has given some successes for never- and light-smoking patients, there are no proven targeted therapies for the majority of smokers with the disease. Despite sequencing hundreds of lung cancers, known driver mutations are lacking for a majority of tumors. Distinguishing driver mutations from inconsequential passenger mutations in a given lung tumor is extremely challenging due to the high mutational burden of smoking-related cancers. Here we discuss the methods employed to identify driver mutations from these large datasets. We examine different approaches based on bioinformatics, in silico structural modeling and biological dependency screens and discuss the limitations of these approaches.
引用
收藏
页码:1149 / 1160
页数:12
相关论文
共 50 条
  • [31] Proposed Training to Meet Challenges of Large-Scale Data in Neuroscience
    Grisham, William
    Lom, Barbara
    Lanyon, Linda
    Ramos, Raddy L.
    FRONTIERS IN NEUROINFORMATICS, 2016, 10
  • [32] Genome-wide identification of directed gene networks using large-scale population genomics data
    Luijk, Rene
    Dekkers, Koen F.
    van Iterson, Maarten
    Arindrarto, Wibowo
    Claringbould, Annique
    Hop, Paul
    Boomsma, Dorret, I
    van Duijn, Cornelia M.
    van Greevenbroek, Marleen M. J.
    Veldink, Jan H.
    Wijmenga, Cisca
    Franke, Lude
    't Hoend, Peter A. C.
    Jansen, Rick
    van Meurs, Joyce
    Mei, Hailiang
    Slagboomi, P. Eline
    Heijmans, Bastiaan T.
    van Zwet, Erik W.
    NATURE COMMUNICATIONS, 2018, 9
  • [33] Genome-wide identification of directed gene networks using large-scale population genomics data
    René Luijk
    Koen F. Dekkers
    Maarten van Iterson
    Wibowo Arindrarto
    Annique Claringbould
    Paul Hop
    Dorret I. Boomsma
    Cornelia M. van Duijn
    Marleen M. J. van Greevenbroek
    Jan H. Veldink
    Cisca Wijmenga
    Lude Franke
    Peter A. C. ’t Hoen
    Rick Jansen
    Joyce van Meurs
    Hailiang Mei
    P. Eline Slagboom
    Bastiaan T. Heijmans
    Erik W. van Zwet
    Nature Communications, 9
  • [34] Phenotypic screening using large-scale genomic libraries to identify drug targets for the treatment of cancer
    Sato, Mitsuo
    ONCOLOGY LETTERS, 2020, 19 (06) : 3617 - 3626
  • [35] A Large-Scale Exome-Wide Association Study Identifies Novel Germline Mutations in Lung Cancer
    Shen, Sipeng
    Li, Zaiming
    Jiang, Yunke
    Duan, Weiwei
    Li, Hongru
    Du, Sha
    Esteller, Manel
    Shen, Hongbing
    Hu, Zhibin
    Zhao, Yang
    Christiani, David C.
    Chen, Feng
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 208 (03) : 280 - 289
  • [36] Using large-scale molecular data sets to improve breast cancer treatment
    Creighton, Chad J.
    BREAST CANCER MANAGEMENT, 2012, 1 (01) : 57 - 64
  • [37] Large-scale whole exome sequencing studies identify two genes,CTSL and APOE, associated with lung cancer
    Xu, Jingxiong
    Xu, Wei
    Choi, Jiyeon
    Brhane, Yonathan
    Christiani, David C.
    Kothari, Jui
    Mckay, James
    Field, John K.
    Davies, Michael P. A.
    Liu, Geoffrey
    Amos, Christopher I.
    Hung, Rayjean J.
    Briollais, Laurent
    PLOS GENETICS, 2023, 19 (09):
  • [38] Keynote comment: Are large-scale cancer-genomics projects ready to use?
    Rodriguez, JA
    Giaccone, G
    LANCET ONCOLOGY, 2006, 7 (03): : 190 - 191
  • [39] Deep learning for the large-scale cancer data analysis
    Tsuji, Shingo
    Aburatani, Hiroyuki
    CANCER RESEARCH, 2015, 75 (22)
  • [40] Managing large-scale cancer research data programs
    Klenk, Juergen
    Mikdadi, Dina
    Owens, Chelsea
    Maggio, Angela
    Singh, Bhavani
    Barner, Eric
    Davidsen, Tanja
    Kim, Erika
    CANCER RESEARCH, 2024, 84 (06)