An imConvNet-based deep learning model for Chinese medical named entity recognition

被引:4
|
作者
Zheng, Yuchen [1 ]
Han, Zhenggong [2 ]
Cai, Yimin [1 ]
Duan, Xubo [1 ]
Sun, Jiangling [3 ]
Yang, Wei [1 ]
Huang, Haisong [2 ]
机构
[1] Guizhou Univ, Med Coll, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Guizhou, Peoples R China
[3] Guiyang Hosp Stomatol, Guiyang 550002, Guizhou, Peoples R China
关键词
Named entity recognition; Convolutional neural network; Chinese electronic medical records; BiLSTM-CRF; BERT; BIG DATA; HEALTH; CARE;
D O I
10.1186/s12911-022-02049-4
中图分类号
R-058 [];
学科分类号
摘要
Background With the development of current medical technology, information management becomes perfect in the medical field. Medical big data analysis is based on a large amount of medical and health data stored in the electronic medical system, such as electronic medical records and medical reports. How to fully exploit the resources of information included in these medical data has always been the subject of research by many scholars. The basis for text mining is named entity recognition (NER), which has its particularities in the medical field, where issues such as inadequate text resources and a large number of professional domain terms continue to face significant challenges in medical NER. Methods We improved the convolutional neural network model (imConvNet) to obtain additional text features. Concurrently, we continue to use the classical Bert pre-training model and BiLSTM model for named entity recognition. We use imConvNet model to extract additional word vector features and improve named entity recognition accuracy. The proposed model, named BERT-imConvNet-BiLSTM-CRF, is composed of four layers: BERT embedding layer-getting word embedding vector; imConvNet layer-capturing the context feature of each character; BiLSTM (Bidirectional Long Short-Term Memory) layer-capturing the long-distance dependencies; CRF (Conditional Random Field) layer-labeling characters based on their features and transfer rules. Results The average F1 score on the public medical data set yidu-s4k reached 91.38% when combined with the classical model; when real electronic medical record text in impacted wisdom teeth is used as the experimental object, the model's F1 score is 93.89%. They all show better results than classical models. Conclusions The suggested novel model (imConvNet) significantly improves the recognition accuracy of Chinese medical named entities and applies to various medical corpora.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Named Entity Recognition in Online Medical Consultation Using Deep Learning
    Hu, Ze
    Li, Wenjun
    Yang, Hongyu
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [22] Chinese Named Entity Recognition Based on Template and Contrastive Learning
    Zhu, Jingjing
    Cai, Tianyu
    Zhao, Zhenyu
    Ju, Shenggen
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT I, NLPCC 2024, 2025, 15359 : 392 - 405
  • [23] A named entity recognition model based on ensemble learning
    Zhu, Xinghui
    Zou, Zhuoyang
    Qiao, Bo
    Fang, Kui
    Chen, Yiming
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2021, 21 (02) : 475 - 486
  • [24] Named entity recognition based on a machine learning model
    Wang, Jing
    Liu, Zhijing
    Zhao, Hui
    Research Journal of Applied Sciences, Engineering and Technology, 2012, 4 (20) : 3973 - 3980
  • [25] Military Named Entity Recognition Method Based on Deep Learning
    Wang, Xuefeng
    Yang, Ruopeng
    Lu, Yiwei
    Wu, Qingfeng
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 479 - 483
  • [26] A Hybrid Model for Named Entity Recognition on Chinese Electronic Medical Records
    Wang, Yu
    Sun, Yining
    Ma, Zuchang
    Gao, Lisheng
    Xu, Yang
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2021, 20 (02)
  • [27] Subsequence Based Deep Active Learning for Named Entity Recognition
    Radmard, Puria
    Fathullah, Yassir
    Lipani, Aldo
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 4310 - 4321
  • [28] Multitask Learning for Chinese Named Entity Recognition
    Zhang, Qun
    Li, Zhenzhen
    Feng, Dawei
    Li, Dongsheng
    Huang, Zhen
    Peng, Yuxing
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 653 - 662
  • [29] A Named Entity Recognition Model Based on Entity Trigger Reinforcement Learning
    Wang, Ping
    Si, Nong
    Tong, Haopeng
    2022 IEEE 2ND INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND ARTIFICIAL INTELLIGENCE (CCAI 2022), 2022, : 43 - 48
  • [30] A Survey on Deep Learning for Named Entity Recognition
    Li, Jing
    Sun, Aixin
    Han, Jianglei
    Li, Chenliang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 50 - 70