An imConvNet-based deep learning model for Chinese medical named entity recognition

被引:4
|
作者
Zheng, Yuchen [1 ]
Han, Zhenggong [2 ]
Cai, Yimin [1 ]
Duan, Xubo [1 ]
Sun, Jiangling [3 ]
Yang, Wei [1 ]
Huang, Haisong [2 ]
机构
[1] Guizhou Univ, Med Coll, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Guizhou, Peoples R China
[3] Guiyang Hosp Stomatol, Guiyang 550002, Guizhou, Peoples R China
关键词
Named entity recognition; Convolutional neural network; Chinese electronic medical records; BiLSTM-CRF; BERT; BIG DATA; HEALTH; CARE;
D O I
10.1186/s12911-022-02049-4
中图分类号
R-058 [];
学科分类号
摘要
Background With the development of current medical technology, information management becomes perfect in the medical field. Medical big data analysis is based on a large amount of medical and health data stored in the electronic medical system, such as electronic medical records and medical reports. How to fully exploit the resources of information included in these medical data has always been the subject of research by many scholars. The basis for text mining is named entity recognition (NER), which has its particularities in the medical field, where issues such as inadequate text resources and a large number of professional domain terms continue to face significant challenges in medical NER. Methods We improved the convolutional neural network model (imConvNet) to obtain additional text features. Concurrently, we continue to use the classical Bert pre-training model and BiLSTM model for named entity recognition. We use imConvNet model to extract additional word vector features and improve named entity recognition accuracy. The proposed model, named BERT-imConvNet-BiLSTM-CRF, is composed of four layers: BERT embedding layer-getting word embedding vector; imConvNet layer-capturing the context feature of each character; BiLSTM (Bidirectional Long Short-Term Memory) layer-capturing the long-distance dependencies; CRF (Conditional Random Field) layer-labeling characters based on their features and transfer rules. Results The average F1 score on the public medical data set yidu-s4k reached 91.38% when combined with the classical model; when real electronic medical record text in impacted wisdom teeth is used as the experimental object, the model's F1 score is 93.89%. They all show better results than classical models. Conclusions The suggested novel model (imConvNet) significantly improves the recognition accuracy of Chinese medical named entities and applies to various medical corpora.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An imConvNet-based deep learning model for Chinese medical named entity recognition
    Yuchen Zheng
    Zhenggong Han
    Yimin Cai
    Xubo Duan
    Jiangling Sun
    Wei Yang
    Haisong Huang
    BMC Medical Informatics and Decision Making, 22
  • [2] An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records
    Li, Luqi
    Zhao, Jie
    Hou, Li
    Zhai, Yunkai
    Shi, Jinming
    Cui, Fangfang
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [3] An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records
    Luqi Li
    Jie Zhao
    Li Hou
    Yunkai Zhai
    Jinming Shi
    Fangfang Cui
    BMC Medical Informatics and Decision Making, 19
  • [4] Survey on Chinese named entity recognition with deep learning
    Kang Y.
    Sun L.
    Zhu R.
    Li M.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (11): : 44 - 53
  • [5] Named entity recognition based on deep learning
    Ji Z.
    Kong D.
    Liu W.
    Dong W.
    Sang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (06): : 1603 - 1615
  • [6] Chinese medical named entity recognition model based on local enhancement
    Chen, Jing
    Xing, Kexuan
    Meng, Weilun
    Guo, Jingfeng
    Feng, Jianzhou
    Tongxin Xuebao/Journal on Communications, 45 (07): : 171 - 183
  • [7] Clinical Named Entity Recognition from Chinese Electronic Medical Records Based on Deep Learning Pretraining
    Gong, Lejun
    Zhang, Zhifei
    Chen, Shiqi
    JOURNAL OF HEALTHCARE ENGINEERING, 2020, 2020
  • [8] Chinese medical named entity recognition based on zero-shot learning
    Zhou, Menglin
    Gong, Kecun
    2022 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING, MLNLP 2022, 2022, : 190 - 195
  • [9] Research Progress on Named Entity Recognition in Chinese Deep Learning
    Li, Li
    Xi, Xuefeng
    Sheng, Shengli
    Cui, Zhiming
    Xu, Jiabao
    Computer Engineering and Applications, 2023, 59 (24) : 46 - 69
  • [10] A Hybrid Model Based on Deep Convolutional Network for Medical Named Entity Recognition
    Wang, Tingzhong
    Zhang, Yongxin
    Zhang, Yifan
    Lu, Hao
    Yu, Bo
    Peng, Shoubo
    Ma, Youzhong
    Li, Deguang
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2023, 2023