HOPF RIGIDITY FOR CONVEX BILLIARDS ON THE HEMISPHERE AND HYPERBOLIC PLANE

被引:21
|
作者
Bialy, Misha [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, Tel Aviv, Israel
关键词
Birkhoff conjecture; billiards; conjugate points; integrable systems; TORI;
D O I
10.3934/dcds.2013.33.3903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with Hopf type rigidity for convex billiards on surfaces of constant curvature. I prove that the only convex billiard without conjugate points on the hyperbolic plane or on the hemisphere is a circular billiard.
引用
收藏
页码:3903 / 3913
页数:11
相关论文
共 50 条
  • [21] H-CONVEX CURVES IN THE HYPERBOLIC PLANE
    PINKALL, U
    MATHEMATISCHE ANNALEN, 1984, 267 (03) : 289 - 297
  • [22] Asymptotic Behaviour of λ-Convex Sets in the Hyperbolic Plane
    Eduardo Gallego
    Agustí Reventós
    Geometriae Dedicata, 1999, 76 : 275 - 289
  • [23] Aperiodic tilings of the hyperbolic plane by convex polygons
    G. A. Margulis
    S. Mozes
    Israel Journal of Mathematics, 1998, 107 : 319 - 325
  • [24] CONVEX BILLIARDS
    GRUBER, PM
    GEOMETRIAE DEDICATA, 1990, 33 (02) : 205 - 226
  • [25] Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane
    Bialy, M.
    Mironov, A. E.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (02) : 187 - 209
  • [26] Convex billiards on convex spheres
    Zhang, Pengfei
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04): : 793 - 816
  • [27] Multidimensional hyperbolic billiards
    Szasz, Domokos
    DYNAMICAL SYSTEMS, ERGODIC THEORY, AND PROBABILITY: IN MEMORY OF KOLYA CHERNOV, 2017, 698 : 201 - 220
  • [28] Design of Hyperbolic Billiards
    Maciej P. Wojtkowski
    Communications in Mathematical Physics, 2007, 273 : 283 - 304
  • [29] Design of hyperbolic billiards
    Wojtkowski, Maciej P.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (02) : 283 - 304
  • [30] Perimeter, diameter and area of convex sets in the hyperbolic plane
    Gallego, E
    Solanes, G
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 : 161 - 178