A novel filtration composite anode configuration of microbial fuel cell for efficient wastewater treatment and enhanced power generation

被引:21
|
作者
Xu, Ting [1 ]
Wang, Qiuying [1 ]
Wu, Shijia [1 ]
Fu, Boya [1 ]
Liang, Peng [1 ]
Huang, Xia [1 ]
Zhang, Xiaoyuan [1 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Microbial fuel cell; Filtration composite anode; COD removal; Power generation; GRAPHITE FIBER BRUSH; FLOW-THROUGH; MEMBRANE BIOREACTOR; ULTRAFILTRATION MEMBRANE; UF-MFCS; ENERGY; PERFORMANCE; BIOCATHODE; TRANSPORT; ELECTRODE;
D O I
10.1016/j.jclepro.2017.12.259
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A microbial fuel cell (MFC), as a cleaner wastewater treatment process, can recover electricity from organic wastes. However, high power production and high quality effluent are difficult to achieve simultaneously. In this study, a novel filtration composite anode (FCA), which combined carbon fiber brush and carbon textile was proposed to enhance COD removal and power generation performance of MFCs. The COD removal rate constant of MFCs with the filtration composite anode (FCA-MFC) was 033 h(-1), much higher than that of MFCs with single brush anode (FB-MFC) (0.23 h(-1)) or textile anode (FT-MFC) (0.18 h(-1)) in the recirculation mode, and also exceeded that of CA-MFC in non-recirculation mode (0.12 h(-1)). FCA-MFC delivered a maximum power density of 1140 mW m(-2) at a recirculation rate of 2 mL min(-1), which was higher than the FB-MFC (990 mW m(-2)) and the FT-MFC (80 mW m(-2)) and its counterparts in non-recirculation mode (1000 mW m(-2)). Moreover, the FCA-MFC maintained a higher current density (4.0 A m(-2)) than the other two MFCs until the COD decreased to 40 mg L-1 at an external resistance of 100 Omega. CV and EIS tests verified a higher electrochemical performance of the filtration composite anode. These results demonstrated higher COD removals and power generation of the composite anode at ambient temperature, resulting from the filtration effect that facilitated mass transfer, increased microbial colonization, and improved electrochemical activity. Considering the high-quality effluent and high power generation, the filtration composite anode configuration promises a great potential for sustainable wastewater treatment application. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:305 / 313
页数:9
相关论文
共 50 条
  • [41] Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration
    Baltazar Estrada-Arriaga, Edson
    Hernandez-Romano, Jesus
    Garcia-Sanchez, Liliana
    Guillen Garces, Rosa Angelica
    Obed Bahena-Bahena, Erick
    Guadarrama-Perez, Oscar
    Moeller Chavez, Gabriela Eleonora
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2018, 214 : 232 - 241
  • [42] Simultaneous generation of Bioelectricity and Treatment of Swine wastewater in a Microbial Fuel Cell
    Egbadon, Emmanuel O.
    Akujobi, Campbell O.
    Nweke, Chris O.
    Braide, Wesley
    Akaluka, Cynthia K.
    Adeleye, Samuel A.
    INTERNATIONAL LETTERS OF NATURAL SCIENCES, 2016, 54 : 100 - 107
  • [43] Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland
    Tao, Mengni
    Guan, Lin
    Jing, Zhaoqian
    Tao, Zhengkai
    Wang, Yue
    Luo, Hui
    Wang, Yin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 709
  • [44] High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell
    Sevda, Surajbhan
    Dominguez-Benetton, Xochitl
    Vanbroekhoven, Karolien
    De Wever, Heleen
    Sreekrishnan, T. R.
    Pant, Deepak
    APPLIED ENERGY, 2013, 105 : 194 - 206
  • [45] Methanogenesis suppression and increased power generation in microbial fuel cell during treatment of chloroform containing wastewater
    Bagchi, Somdipta
    Behera, Manaswini
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 148 : 249 - 255
  • [46] Treatment of acetone and ammonia-nitrogen wastewater and simultaneous power generation using microbial fuel cell
    Liu, Yuanfeng
    Wang, Le
    Zhang, Xiuling
    Jia, Wenlong
    Ren, Tingli
    Guo, Kaixiang
    Li, Congju
    Jingxi Huagong/Fine Chemicals, 2022, 39 (01): : 187 - 193
  • [47] Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation
    Yadav, Anamika
    Jadhav, Dipak A.
    Ghangrekar, Makarand M.
    Mitra, Arunabha
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (34) : 51117 - 51129
  • [48] Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation
    Anamika Yadav
    Dipak A. Jadhav
    Makarand M. Ghangrekar
    Arunabha Mitra
    Environmental Science and Pollution Research, 2022, 29 : 51117 - 51129
  • [49] Factors affecting the performance of double chamber microbial fuel cell for simultaneous wastewater treatment and power generation
    Khan, Maksudur R.
    Amin, M. S. A.
    Rahman, M. T.
    Akbar, F.
    Ferdaus, K.
    POLISH JOURNAL OF CHEMICAL TECHNOLOGY, 2013, 15 (01) : 7 - 11
  • [50] Microbial fuel cell for effluent treatment and sustainable power generation
    Palanisamy, Divyalakshmi
    Chockalingam, Lajapathi Rai
    Murugan, Devaraj
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11952 - 11964