ASYMPTOTICS AND CONSISTENT BOOTSTRAPS FOR DEA ESTIMATORS IN NONPARAMETRIC FRONTIER MODELS

被引:195
|
作者
Kneip, Alois [2 ]
Simar, Leopold [3 ]
Wilson, Paul W. [1 ]
机构
[1] Clemson Univ, Dept Econ, Clemson, SC 29634 USA
[2] Univ Bonn, D-5300 Bonn, Germany
[3] Univ Catholique Louvain, Louvain, Belgium
关键词
D O I
10.1017/S0266466608080651
中图分类号
F [经济];
学科分类号
02 ;
摘要
Nonparametric data envelopment analysis (DEA) estimators based on linear programming methods have been widely applied in analyses of productive efficiency. The distributions of these estimators remain unknown except in the simple case of one input and one output, and previous bootstrap methods proposed for inference have not been proved consistent, making inference doubtful. This paper derives the asymptotic distribution of DEA estimators under variable returns to scale. This result is used to prove consistency of two different bootstrap procedures (one based on subsampling, the other based on smoothing). The smooth bootstrap requires smoothing the irregularly bounded density of inputs and outputs and smoothing the DEA frontier estimate. Both bootstrap procedures allow for dependence of the inefficiency process on output levels and the mix of inputs in the case of input-oriented measures, or on input levels and the mix of outputs in the case of output-oriented measures.
引用
收藏
页码:1663 / 1697
页数:35
相关论文
共 50 条
  • [31] FIXED-b ASYMPTOTICS FOR SPATIALLY DEPENDENT ROBUST NONPARAMETRIC COVARIANCE MATRIX ESTIMATORS
    Bester, C. Alan
    Conley, Timothy G.
    Hansen, Christian B.
    Vogelsang, Timothy J.
    ECONOMETRIC THEORY, 2016, 32 (01) : 154 - 186
  • [32] Multi bandwidth kernel estimators for nonparametric deconvolution problems: Asymptotics and finite sample performance
    van Es, AJ
    Uh, HW
    JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 13 (01) : 107 - 128
  • [33] A use of a nonparametric statistic for DEA frontier shift: the Kruskal and Wallis rank test
    Sueyoshi, T
    Aoki, S
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2001, 29 (01): : 1 - 18
  • [34] A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators
    Kneip, Alois
    Simar, Leopold
    Wilson, Paul W.
    COMPUTATIONAL ECONOMICS, 2011, 38 (04) : 483 - 515
  • [35] A Computationally Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators
    Alois Kneip
    Léopold Simar
    Paul W. Wilson
    Computational Economics, 2011, 38 : 483 - 515
  • [36] Asymptotics of kernel error density estimators in nonlinear autoregressive models
    Keang Fu
    Xiaorong Yang
    Journal of Mathematical Chemistry, 2008, 44 : 831 - 838
  • [37] Nonparametric tests of tail behavior in stochastic frontier models
    Horrace, William C.
    Wang, Yulong
    JOURNAL OF APPLIED ECONOMETRICS, 2022, 37 (03) : 537 - 562
  • [38] Asymptotics of kernel error density estimators in nonlinear autoregressive models
    Fu, Keang
    Yang, Xiaorong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 44 (03) : 831 - 838
  • [39] Nonparametric least squares methods for stochastic frontier models
    Simar, Leopold
    Van Keilegom, Ingrid
    Zelenyuk, Valentin
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2017, 47 (03) : 189 - 204
  • [40] Frontier estimation in nonparametric location-scale models
    Florens, Jean-Pierre
    Simar, Leopold
    Van Keilegom, Ingrid
    JOURNAL OF ECONOMETRICS, 2014, 178 : 456 - 470