Patient Associated Motion Detection with Optical Flow using Microsoft Kinect V2

被引:0
|
作者
Liu, Liang [1 ]
Mehrotra, Sanjay [1 ]
机构
[1] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
关键词
patient monitoring; motion detection; optical flow;
D O I
10.1109/CHASE.2017.99
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work describes our recent work of detecting the patient associated motions in a hospital room. After we had installed the designed Kinect V2 sensor-based health system in the hospital, we began to face big data challenges. The acquired data is big in both size and content. In this paper, we will propose a method to filter the big data using optical flow methods. As a result, we can discard the unnecessary data and quickly target on the data including valuable motion information about the patient. The proposed methodology facilitates the follow-up activity detection and serves for evaluating the amount of the movement the patient generates to allow the caregiver to improve the treatment plan.
引用
收藏
页码:274 / 275
页数:2
相关论文
共 50 条
  • [41] Development and Validation of a Portable and Inexpensive Tool to Measure the Drop Vertical Jump Using the Microsoft Kinect V2
    Gray, Aaron D.
    Willis, Brad W.
    Skubic, Marjorie
    Huo, Zhiyu
    Razu, Swithin
    Sherman, Seth L.
    Guess, Trent M.
    SPORTS HEALTH-A MULTIDISCIPLINARY APPROACH, 2017, 9 (06): : 537 - 544
  • [42] Quantifying Facial Paralysis using the Kinect v2
    Gaber, Amira
    Taher, Mona F.
    Wahed, Manal Abdel
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 2497 - 2501
  • [43] Kinect4FOG: monitoring and improving mobility in people with Parkinson's using a novel system incorporating the Microsoft Kinect v2
    Amini, Amin
    Banitsas, Konstantinos
    Young, William R.
    DISABILITY AND REHABILITATION-ASSISTIVE TECHNOLOGY, 2019, 14 (06) : 566 - 573
  • [44] Evaluating the Accuracy of the Azure Kinect and Kinect v2
    Kurillo, Gregorij
    Hemingway, Evan
    Cheng, Mu-Lin
    Cheng, Louis
    SENSORS, 2022, 22 (07)
  • [45] An Assessment of a Microsoft Kinect V2 Sensor for Voluntary Breath-Hold Monitoring in Radiotherapy
    Edmunds, D.
    Donovan, E.
    MEDICAL PHYSICS, 2016, 43 (06) : 3681 - 3681
  • [46] A 3D Deep Learning Approach for Classification of Gait Abnormalities Using Microsoft Kinect V2 Sensor
    Shoryabi, Milad
    Foroutannia, Ali
    Rowhanimanesh, Alireza
    2021 26TH INTERNATIONAL COMPUTER CONFERENCE, COMPUTER SOCIETY OF IRAN (CSICC), 2021,
  • [47] Multiple Kinect V2 Calibration
    Cordova-Esparza, Diana-Margarita
    Terven, Juan R.
    Jimenez-Hernandez, Hugo
    Vazquez-Cervantes, Alberto
    Herrera-Navarro, Ana-Marcela
    Ramirez-Pedraza, Alfonso
    AUTOMATIKA, 2016, 57 (03) : 810 - 821
  • [48] Projectable Interactive Surface Using Microsoft Kinect V2: Recovering Information from Coarse Data to Detect Touch
    Sharma, P.
    Joshi, R. P.
    Boby, R. A.
    Saha, S. K.
    Matsumaru, T.
    2015 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2015, : 795 - 800
  • [49] Spatial accuracy and reliability of the Microsoft Kinect V2 in the assessment of joint movement in comparison to marker-based motion capture (Vicon)
    Otte, K.
    Kayser, B.
    Mansow-Model, S.
    Brandt, A. U.
    Verrel, J.
    Schmitz-Huebsch, T.
    MOVEMENT DISORDERS, 2016, 31 : S188 - S189
  • [50] A New Technique for Foot-Off and Foot Contact Detection in a Gait Cycle Based on the Knee Joint Angle Using Microsoft Kinect v2
    Amini, A.
    Banitsas, K.
    Hosseinzadeh, S.
    2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, : 153 - 156