Motor data-regularized nonnegative matrix factorization for ego-noise suppression

被引:2
|
作者
Schmidt, Alexander [1 ]
Brendel, Andreas [1 ]
Haubner, Thomas [1 ]
Kellermann, Walter [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Multimedia Communicat & Signal Proc, Cauerstr 7, D-91058 Erlangen, Germany
关键词
Ego-noise; Motor data; Robot audition; Humanoid robot;
D O I
10.1186/s13636-020-00178-0
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ego-noise, i.e., the noise a robot causes by its own motions, significantly corrupts the microphone signal and severely impairs the robot's capability to interact seamlessly with its environment. Therefore, suitable ego-noise suppression techniques are required. For this, it is intuitive to use also motor data collected by proprioceptors mounted to the joints of the robot since it describes the physical state of the robot and provides additional information about the ego-noise sources. In this paper, we use a dictionary-based approach for ego-noise suppression in a semi-supervised manner: first, an ego-noise dictionary is learned and subsequently used to estimate the ego-noise components of a mixture by computing a weighted sum of dictionary entries. The estimation of the weights is very sensitive against other signals beside ego-noise contained in the mixture. For increased robustness, we therefore propose to incorporate knowledge about the physical state of the robot to the estimation of the weights. This is achieved by introducing a motor data-based regularization term to the estimation problem which promotes similar weights for similar physical states. The regularization is derived by representing the motor data as a graph and imprints the intrinsic structure of the motor data space onto the dictionary model. We analyze the proposed method and evaluate its ego-noise suppression performance for a large variety of different movements and demonstrate the superiority of the proposed method compared to an approach without using motor data.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Robust graph regularized nonnegative matrix factorization for clustering
    Shudong Huang
    Hongjun Wang
    Tao Li
    Tianrui Li
    Zenglin Xu
    Data Mining and Knowledge Discovery, 2018, 32 : 483 - 503
  • [32] Robust Graph Regularized Nonnegative Matrix Factorization for Clustering
    Peng, Chong
    Kang, Zhao
    Hu, Yunhong
    Cheng, Jie
    Cheng, Qiang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2017, 11 (03)
  • [33] Robust graph regularized nonnegative matrix factorization for clustering
    Huang, Shudong
    Wang, Hongjun
    Li, Tao
    Li, Tianrui
    Xu, Zenglin
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (02) : 483 - 503
  • [34] Nonnegative Matrix Factorization: When Data is not Nonnegative
    Wu, Siyuan
    Wang, Jim
    2014 7TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2014), 2014, : 227 - 231
  • [35] Adaptive Graph Regularized Deep Semi-nonnegative Matrix Factorization for Data Representation
    Shu, Zhenqiu
    Sun, Yanwu
    Tang, Jiali
    You, Congzhe
    NEURAL PROCESSING LETTERS, 2022, 54 (06) : 5721 - 5739
  • [36] Adaptive Graph Regularized Deep Semi-nonnegative Matrix Factorization for Data Representation
    Zhenqiu Shu
    Yanwu Sun
    Jiali Tang
    Congzhe You
    Neural Processing Letters, 2022, 54 : 5721 - 5739
  • [37] Topological structure regularized nonnegative matrix factorization for image clustering
    Zhu, Wenjie
    Yan, Yunhui
    Peng, Yishu
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (11): : 7381 - 7399
  • [38] Subspace Structure Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Zhou, Lei
    Zhang, Xueni
    Wang, Jianbo
    Bai, Xiao
    Tong, Lei
    Zhang, Liang
    Zhou, Jun
    Hancock, Edwin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 4257 - 4270
  • [39] Improved hypergraph regularized Nonnegative Matrix Factorization with sparse representation
    Huang, Sheng
    Wang, Hongxing
    Ge, Yongxin
    Huangfu, Luwen
    Zhang, Xiaohong
    Yang, Dan
    PATTERN RECOGNITION LETTERS, 2018, 102 : 8 - 14
  • [40] Regularized nonnegative matrix factorization with adaptive local structure learning
    Huang, Shudong
    Xu, Zenglin
    Kang, Zhao
    Ren, Yazhou
    NEUROCOMPUTING, 2020, 382 : 196 - 209