On the collapse revival of entanglement in a two-dimensional noncommutative harmonic oscillator: An algebraic approach

被引:0
|
作者
Madouri, Fethi [1 ]
Merdaci, Abdeldjalil [2 ]
机构
[1] Univ Tunis, Inst Preparatoire Etud Ingenieurs Tunis, Dept Phys, Lab Mat & Fluides, 02 Rue J Lal Nehru, Tunis 1089, Tunisia
[2] Univ 20 August 1955, Fac Sci, Phys Dept, Rd El Hadaiek,BP 26, Skikda 21000, Algeria
来源
关键词
Harmonic oscillator; noncommutativity; purity function; collapse and revival of entanglement;
D O I
10.1142/S021797922250148X
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we employ an algebraic approach to investigate the dynamics of entanglement in a two-dimensional noncommutative harmonic oscillator. We start by using the so-called the Bopp shift to convert the Hamiltonian describing the system into an equivalent commutative one. This allows us to take advantage of the Schwinger oscillator construction of SU(2) Lie algebra to reveal through the time evolution operator that there is a connection between the noncommutativity and entanglement. The degree of entanglement between the states is evaluated by using the purity function. The remarkable emerging feature is that, as long as the noncommutativity parameter is nonvanishing, the system exhibits the phenomenon of collapse and revival of entanglement.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Collapse-revival of entanglement in a non-commutative harmonic oscillator revealed via coherent states and path integral
    Madouri, Fethi
    Merdaci, Abdeldjalil
    Sbeouelji, Tarek
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2023, 78 (01): : 55 - 66
  • [22] Lissajous curves and semiclassical theory: The two-dimensional harmonic oscillator
    Doll, Roland
    Ingold, Gert-Ludwig
    AMERICAN JOURNAL OF PHYSICS, 2007, 75 (03) : 208 - 215
  • [23] Transformation properties of wave functions of a two-dimensional harmonic oscillator
    Mazets, IE
    TECHNICAL PHYSICS, 2001, 46 (02) : 154 - 157
  • [24] Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator
    del Castillo, GFT
    García, TT
    REVISTA MEXICANA DE FISICA, 2002, 48 (01) : 16 - 18
  • [25] Transformation properties of wave functions of a two-dimensional harmonic oscillator
    I. E. Mazets
    Technical Physics, 2001, 46 : 154 - 157
  • [26] On the localization of the spectrum of some perturbations of a two-dimensional harmonic oscillator
    Kanguzhin, Baltabek
    Fazullin, Ziganur
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (6-7) : 1194 - 1208
  • [27] The classical Lenz vector and the two-dimensional quantum harmonic oscillator
    Palmisano, S.
    Polosa, A. D.
    Senese, R.
    Sciotti, F.
    PHYSICS OPEN, 2020, 3
  • [28] On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space
    Falomir, H.
    Pisani, P. A. G.
    Vega, F.
    Carcamo, D.
    Mendez, F.
    Loewe, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (05)
  • [29] Noncommutative two-dimensional gravities
    Balachandran, A. P.
    Govindarajan, T. R.
    Gupta, Kumar S.
    Kurkcuoglu, Seckin
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (20) : 5799 - 5810
  • [30] Comment on "Entanglement of two interacting bosons in a two-dimensional isotropic harmonic trap"
    Koscik, Przemyslaw
    PHYSICS LETTERS A, 2010, 374 (29) : 2999 - 3000