GEE4FLOOD: rapid mapping of flood areas using temporal Sentinel-1 SAR images with Google Earth Engine cloud platform

被引:31
|
作者
Vanama, Venkata Sai Krishna [1 ]
Mandal, Dipankar [2 ]
Rao, Yalamanchili Subrahmanyeswara [2 ]
机构
[1] Indian Inst Technol, Ctr Urban Sci & Engn, Mumbai, Maharashtra, India
[2] Indian Inst Technol, Ctr Studies Resources Engn, Mumbai, Maharashtra, India
关键词
flood mapping; synthetic aperture radar backscatter; Global Precipitation Measurement Integrated Multisatellite Retrievals; Kerala flood; Otsu; RIVER-BASIN; WATER; EXTRACTION; INUNDATION; SELECTION; SUPPORT; EXTENT; RISK;
D O I
10.1117/1.JRS.14.034505
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The present state of the art technologies for flood mapping are typically tested on small geographical regions due to limitation of resources, which hinders the implementation of real-time flood management activities. We proposed a unified framework (GEE4FLOOD) for rapid flood mapping in Google Earth Engine (GEE) cloud platform. With the unexpected spells of extreme rainfall in August 2018, many parts of Kerala state in India experienced a major disastrous flood. Therefore, we tested the GEE4FLOOD processing chain on August 2018 Kerala flood event. GEE4FLOOD utilizes multitemporal Sentinel-1 synthetic aperture radar images available in GEE catalog and an automatic Otsu' s thresholding algorithm for flood mapping. It also utilizes other remote sensing datasets available in GEE catalog for permanent water body mask creation and result validation. The ground truth data collected during the Kerala flood indicates promising accuracy with 82% overall accuracy and 78.5% accuracy for flood class alone. In addition, the entire process from data fetching to flood map generation at a varying geographical extent (district to state level) took similar to 2 to 4 min. (C) 2020 Society of Photo Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:23
相关论文
共 50 条
  • [21] An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data
    Li, Yu
    Martinis, Sandro
    Plank, Simon
    Ludwig, Ralf
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 : 123 - 135
  • [22] Mapping Photovoltaic Panels in Coastal China Using Sentinel-1 and Sentinel-2 Images and Google Earth Engine
    Zhang, Haitao
    Tian, Peng
    Zhong, Jie
    Liu, Yongchao
    Li, Jialin
    REMOTE SENSING, 2023, 15 (15)
  • [23] RESEARCH on FOREST COVER CHANGE USING SENTINEL-2 IMAGES in COMBINATION with SENTINEL-1 IMAGES on GOOGLE EARTH ENGINE PLATFORM
    Anh, Tran Van
    Hanh, Tran Hong
    Nghi, Le Thanh
    Phuong, Doan Thi Nam
    42nd Asian Conference on Remote Sensing, ACRS 2021, 2021,
  • [24] STUDY FLOOD REGIME USING HIGH TEMPORAL RESOLUTION SENTINEL-1 IMAGES
    Minh, D. Ho Tong
    El Moussawi, I
    Ngo, Y-N
    Baghdadi, N.
    Blatrix, R.
    McKey, D.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5085 - 5088
  • [25] Flood Mapping Using Multi-temporal Sentinel-1 SAR Images: A Case Study—Inaouene Watershed from Northeast of Morocco
    Brahim Benzougagh
    Pierre-Louis Frison
    Sarita Gajbhiye Meshram
    Larbi Boudad
    Abdallah Dridri
    Driss Sadkaoui
    Khalid Mimich
    Khaled Mohamed Khedher
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022, 46 : 1481 - 1490
  • [26] Operational Flood Detection Using Sentinel-1 SAR Data over Large Areas
    Cao, Han
    Zhang, Hong
    Wang, Chao
    Zhang, Bo
    WATER, 2019, 11 (04)
  • [27] Google Earth Engine-Based Identification of Flood Extent and Flood-Affected Paddy Rice Fields Using Sentinel-2 MSI and Sentinel-1 SAR Data in Bihar State, India
    Kumar, Himanshu
    Karwariya, Sateesh Kumar
    Kumar, Rohan
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (05) : 791 - 803
  • [28] Google Earth Engine-Based Identification of Flood Extent and Flood-Affected Paddy Rice Fields Using Sentinel-2 MSI and Sentinel-1 SAR Data in Bihar State, India
    Himanshu Kumar
    Sateesh Kumar Karwariya
    Rohan Kumar
    Journal of the Indian Society of Remote Sensing, 2022, 50 : 791 - 803
  • [29] Using Sentinel-1 and Google Earth Engine cloud computing for detecting historical flood hazards in tropical urban regions: a case of Dar es Salaam
    Demissie, Biadgilgn
    Vanhuysse, Sabine
    Grippa, Tais
    Flasse, Charlotte
    Wolff, Eleonore
    GEOMATICS NATURAL HAZARDS & RISK, 2023, 14 (01)
  • [30] Flood mapping of the lower Mejerda Valley (Tunisia) using Sentinel-1 SAR: geological and geomorphological controls on flood hazard
    Khemiri, Lamia
    Katlane, Rim
    Khelil, Mannoubi
    Gaidi, Seifeddine
    Ghanmi, Mohamed
    Zargouni, Fouad
    FRONTIERS IN EARTH SCIENCE, 2024, 11