Lattices of Neumann oscillators and Maxwell-Bloch equations

被引:5
|
作者
Saksida, Pavle [1 ]
机构
[1] Univ Ljubljana, Dept Math & Mech, Ljubljana 1000, Slovenia
关键词
D O I
10.1088/0951-7715/19/3/012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a family of new nonlinear many-body dynamical systems which we call the Neumann lattices. These are lattices of N interacting Neumann oscillators. The interactions are of magnetic type. We construct large families of conserved quantities for the Neumann lattices. For this purpose we develop a new method of constructing the first integrals which we call the reduced curvature condition. Certain Neumann lattices are natural partial discretizations of the Maxwell-Bloch equations. The Maxwell-Bloch equations have a natural Hamiltonian structure whose discretizations yield twisted Poisson structures (as described by. Severa and Weinstein) for the Neumann lattices. Thus the Neumann lattices are candidates for integrable systems with twisted Poisson structures.
引用
收藏
页码:747 / 768
页数:22
相关论文
共 50 条
  • [21] The Maxwell-Bloch equations on fractional Leibniz algebroids
    Ivan, Mihai
    Ivan, Gheorghe
    Opris, Dumitru
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (02): : 50 - 58
  • [22] Homoclinic orbits in the Maxwell-Bloch equations with a probe
    Holm, DD
    Kovacic, G
    Wettergren, TA
    PHYSICAL REVIEW E, 1996, 54 (01): : 243 - 256
  • [23] Soliton solutions of coupled Maxwell-Bloch equations
    Chakravarty, S.
    PHYSICS LETTERS A, 2016, 380 (11-12) : 1141 - 1150
  • [24] Numerical Solutions of the Maxwell-Bloch Laser Equations
    Guo, B.-Y.
    Martin, I.
    Perez-Garcia, V. M.
    Vazquez, L.
    Journal of Computational Physics, 129 (01):
  • [25] NONREDUCED MAXWELL-BLOCH EQUATIONS AND A CHIRPED SOLITON
    ANDREEV, AV
    PHYSICS LETTERS A, 1993, 179 (01) : 23 - 26
  • [26] Semiconductor laser theory: The Maxwell-Bloch equations
    不详
    SPATIO-TEMPORAL DYNAMICS AND QUANTUM FLUCTUATIONS IN SEMICONDUCTOR LASERS, 2003, 189 : 13 - 24
  • [27] Mechanic-like resonance in the Maxwell-Bloch equations
    Meziane, Belkacem
    EUROPEAN JOURNAL OF PHYSICS, 2008, 29 (04) : 781 - 797
  • [28] TRAVELING-WAVE SOLUTIONS OF THE MAXWELL-BLOCH EQUATIONS
    ELGIN, JN
    GARZA, JBM
    PHYSICAL REVIEW A, 1987, 35 (09): : 3986 - 3988
  • [29] Solitons for the rotating reduced Maxwell-Bloch equations with anisotropy
    Steudel, H
    Zabolotskii, AA
    Meinel, R
    PHYSICAL REVIEW E, 2005, 72 (05):
  • [30] Periodic and rational solutions of the reduced Maxwell-Bloch equations
    Wei, Jiao
    Wang, Xin
    Geng, Xianguo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 1 - 14