THE FACTORIZATION METHOD IS INDEPENDENT OF TRANSMISSION EIGENVALUES

被引:44
|
作者
Lechleiter, Armin [1 ]
机构
[1] Ecole Polytech, CMAP, INRIA Saclay Ile France, DEFI, F-91128 Palaiseau, France
关键词
Factorization method; transmission eigenvalues; inverse medium scattering; acoustics; electromagnetics; range identity; INVERSE SCATTERING; PROBE;
D O I
10.3934/ipi.2009.3.123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As a rule of thumb, sampling methods for inverse scattering problems suffer from interior eigenvalues of the obstacle. Indeed, throughout the history of such algorithms one meets the phenomenon that if the wave number meets some resonance frequency of the scatterer, then those methods can only be shown to work under suitable modifications. Such modifications often require a-priori knowledge, corrupting thereby the main advantage of sampling methods. It was common belief that transmission eigenvalues play a role corresponding to Dirichlet or Neumann eigenvalues in this respect. We show that this is not the case for the Factorization method: when applied to inverse medium scattering problems this method is stable at transmission eigenvalues.
引用
收藏
页码:123 / 138
页数:16
相关论文
共 50 条
  • [21] Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues
    Ji, Xia
    Sun, Jiguang
    Turner, Tiara
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2012, 38 (04):
  • [22] Legendre spectral method and error estimates for Helmholtz transmission eigenvalues in a cylinder
    Tan, Ting
    Cao, Waixiang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [23] Complex eigenvalues and the inverse spectral problem for transmission eigenvalues
    Colton, David
    Leung, Yuk-J
    INVERSE PROBLEMS, 2013, 29 (10)
  • [24] QZ factorization for generalized eigenvalues applied to waveguide analysis
    Lin, SL
    Li, LW
    Yeo, TS
    Leong, MS
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 28 (05) : 361 - 364
  • [25] THE INTERIOR TRANSMISSION PROBLEM AND BOUNDS ON TRANSMISSION EIGENVALUES
    Hitrik, Michael
    Krupchyk, Katsiaryna
    Ola, Petri
    Paivarinta, Lassi
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (02) : 279 - 293
  • [26] Interior transmission eigenvalues of a rectangle
    Sleeman, B. D.
    Stocks, D. C.
    INVERSE PROBLEMS, 2016, 32 (02)
  • [27] Transmission eigenvalues in one dimension
    Sylvester, John
    INVERSE PROBLEMS, 2013, 29 (10)
  • [28] TRANSMISSION EIGENVALUES FOR MULTIPOINT SCATTERERS
    Grinevich, P. G.
    Novikov, R. G.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2021, 9 (04): : 17 - 25
  • [29] A perturbation problem for transmission eigenvalues
    Ambrose, David M.
    Cakoni, Fioralba
    Moskow, Shari
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (01)
  • [30] TRANSMISSION EIGENVALUES FOR ELLIPTIC OPERATORS
    Hitrik, Michael
    Krupchyk, Katsiaryna
    Ola, Petri
    Paivarinta, Lassi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (06) : 2630 - 2639