Coexistence of Fluid and Crystalline Phases of Proteins in Photosynthetic Membranes

被引:28
|
作者
Schneider, Anna R. [1 ]
Geissler, Phillip L. [2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
LIGHT-HARVESTING COMPLEX; PHOTOSYSTEM-II SUPERCOMPLEX; GRANA MEMBRANES; SUPRAMOLECULAR ORGANIZATION; THYLAKOID MEMBRANE; MACRO-ORGANIZATION; STATE TRANSITIONS; ANTENNA; ARCHITECTURE; SPINACH;
D O I
10.1016/j.bpj.2013.06.052
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Photosystem II (PSII) and its associated light-harvesting complex II (LHCII) are highly concentrated in the stacked grana regions of photosynthetic thylakoid membranes. PSII-LHCII supercomplexes can be arranged in disordered packings, ordered arrays, or mixtures thereof. The physical driving forces underlying array formation are unknown, complicating attempts to determine a possible functional role for arrays in regulating light harvesting or energy conversion efficiency. Here, we introduce a coarse-grained model of protein interactions in coupled photosynthetic membranes, focusing on just two particle types that feature simple shapes and potential energies motivated by structural studies. Reporting on computer simulations of the model's equilibrium fluctuations, we demonstrate its success in reproducing diverse structural features observed in experiments, including extended PSII-LHCII arrays. Free energy calculations reveal that the appearance of arrays marks a phase transition from the disordered fluid state to a system-spanning crystal. The predicted region of fluid-crystal coexistence is broad, encompassing much of the physiologically relevant parameter regime; we propose experiments that could test this prediction. Our results suggest that grana membranes lie at or near phase coexistence, conferring significant structural and functional flexibility to this densely packed membrane protein system.
引用
收藏
页码:1161 / 1170
页数:10
相关论文
共 50 条
  • [21] The thermal persistency of crystalline-fluid phases.
    Weygand, C
    Gabler, R
    BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT, 1938, 71 : 2399 - 2403
  • [22] Coexistence of vitreous and crystalline phases of H2O at ambient temperature
    Shargh, Ali K.
    Picard, Aude
    Hrubiak, Rostislav
    Zhang, Dongzhou
    Hemley, Russell J.
    Deemyad, Shanti
    Abdolrahim, Niaz
    Saffarian, Saveez
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (27)
  • [24] Fluid-gel coexistence in membranes under differential stress
    Foley, Samuel
    Hossein, Amirali
    Deserno, Markus
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 367A - 367A
  • [25] Coexistence of domains with distinct order and polarity in fluid bacterial membranes
    Vanounou, S
    Pines, D
    Pines, E
    Parola, AH
    Fishov, I
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2002, 76 (01) : 1 - 11
  • [26] NEW PHASE OF MATTER IN LAMELLAR PHASES OF TETHERED, CRYSTALLINE MEMBRANES
    TONER, J
    PHYSICAL REVIEW LETTERS, 1990, 64 (15) : 1741 - 1744
  • [27] Phases and fluctuations in a model for asymmetric inhomogeneous fluid membranes
    Sarkar, Niladri
    Basu, Abhik
    PHYSICAL REVIEW E, 2013, 88 (04)
  • [28] Oxygen distribution in the fluid/gel phases of lipid membranes
    Bacellar, Isabel O. L.
    Cordeiro, Rodrigo M.
    Mahling, Pascal
    Baptista, Mauricio S.
    Roeder, Beate
    Hackbarth, Steffen
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2019, 1861 (04): : 879 - 886
  • [29] Mechanisms of Interaction of Electron Transport Proteins in Photosynthetic Membranes of Cyanobacteria
    Kovalenko, I. B.
    Knyazeva, O. S.
    Riznichenko, G. Yu
    Rubin, A. B.
    DOKLADY BIOCHEMISTRY AND BIOPHYSICS, 2011, 440 (01) : 213 - 215
  • [30] Mechanisms of interaction of electron transport proteins in photosynthetic membranes of cyanobacteria
    I. B. Kovalenko
    O. S. Knyazeva
    G. Yu. Riznichenko
    A. B. Rubin
    Doklady Biochemistry and Biophysics, 2011, 440 : 213 - 215