3D ACTION RECOGNITION USING DATA VISUALIZATION AND CONVOLUTIONAL NEURAL NETWORKS

被引:0
|
作者
Liu, Mengyuan [1 ]
Chen, Chen [2 ]
Liu, Hong [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Key Lab Machine Percept, Shenzhen, Peoples R China
[2] Univ Cent Florida, Ctr Comp Vis Res, Orlando, FL 32816 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME) | 2017年
基金
中国国家自然科学基金;
关键词
3D action recognition; data visualization; skeleton data; convolutional neural networks; DEPTH; SENSOR; FUSION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
It remains a challenge to efficiently represent spatial-temporal data for 3D action recognition. To solve this problem, this paper presents a new skeleton-based action representation using data visualization and convolutional neural networks, which contains four main stages. First, skeletons from an action sequence are mapped as a set of five dimensional points, containing three dimensions of location, one dimension of time label and one dimension of joint label. Second, these points are encoded as a series of color images, by visualizing points as RGB pixels. Third, convolutional neural networks are adopted to extract deep features from color images. Finally, action class score is calculated by fusing selected deep features. Extensive experiments on three benchmark datasets show that our method achieves state-of-the-art results.
引用
收藏
页码:925 / 930
页数:6
相关论文
共 50 条
  • [11] SPATIOTEMPORAL PYRAMID POOLING IN 3D CONVOLUTIONAL NEURAL NETWORKS FOR ACTION RECOGNITION
    Cheng, Cheng
    Lv, Pin
    Su, Bing
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3468 - 3472
  • [12] An efficient attention module for 3d convolutional neural networks in action recognition
    Guanghao Jiang
    Xiaoyan Jiang
    Zhijun Fang
    Shanshan Chen
    Applied Intelligence, 2021, 51 : 7043 - 7057
  • [13] 3D Convolutional Neural Network for Action Recognition
    Zhang, Junhui
    Chen, Li
    Tian, Jing
    COMPUTER VISION, PT I, 2017, 771 : 600 - 607
  • [14] SIGN LANGUAGE RECOGNITION USING 3D CONVOLUTIONAL NEURAL NETWORKS
    Huang, Jie
    Zhou, Wengang
    Li, Houqiang
    Li, Weiping
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2015,
  • [15] Learning Spatiotemporal Features for Infrared Action Recognition with 3D Convolutional Neural Networks
    Jiang, Zhuolin
    Rozgic, Viktor
    Adali, Sancar
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 309 - 317
  • [16] Human Action Recognition with 3D Convolutional Neural Network
    Lima, Tiago
    Fernandes, Bruno
    Barros, Pablo
    2017 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2017,
  • [17] Point Cloud Object Recognition using 3D Convolutional Neural Networks
    Soares, Marcelo Borghetti
    Wermter, Stefan
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [18] The Efficiency of Sign Language Recognition using 3D Convolutional Neural Networks
    Soodtoetong, Nantinee
    Gedkhaw, Eakbodin
    2018 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2018, : 70 - 73
  • [19] Recognition of Social Touch Gestures Using 3D Convolutional Neural Networks
    Zhou, Nan
    Du, Jun
    PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 164 - 173
  • [20] SKELETON-BASED HUMAN ACTION RECOGNITION USING SPATIAL TEMPORAL 3D CONVOLUTIONAL NEURAL NETWORKS
    Tu, Juanhui
    Liu, Mengyuan
    Liu, Hong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,