Cannabidiol metabolism revisited: tentative identification of novel decarbonylated metabolites of cannabidiol formed by human liver microsomes and recombinant cytochrome P450 3A4

被引:11
|
作者
Watanabe, Kazuhito [1 ]
Usami, Noriyuki [2 ]
Osada, Shigehiro [1 ]
Narimatsu, Shizuo [3 ]
Yamamoto, Ikuo [2 ]
Yoshimura, Hidetoshi [4 ]
机构
[1] Daiichi Univ Pharm, Minami Ku, 22-1 Tamagawa Cho, Fukuoka, Fukuoka 8158511, Japan
[2] Hokuriku Univ, Fac Pharmaceut Sci, Ho 3 Kanagawa Machi, Kanazawa, Ishikawa 9201181, Japan
[3] Minami Kyushu Univ, Fac Hlth & Nutr, 5-1-2 Kirishima, Miyazaki 8800032, Japan
[4] Kyushu Univ, Grad Sch Pharmaceut Sci, Higashi Ku, 3-1-1 Maidashi, Fukuoka, Fukuoka 8128582, Japan
关键词
Cannabidiol; Decarbonylation; Metabolism; Human liver microsomes; CYP3A4; Cyclopentadienol; CARBON-MONOXIDE; EFFICACY; EPILEPSY;
D O I
10.1007/s11419-019-00467-0
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
PurposeThe purpose of the present study was to identify the structures of cannabidiol (CBD) metabolites during CO formation by human liver microsomes and human recombinant cytochrome P450 (CYP) enzymes.MethodsCBD was NADPH-dependently metabolized by human liver microsomes and human recombinant CYP enzymes. Less-polar metabolites were analyzed by gas chromatography-mass spectrometry monitoring, and their estimated molecular ions were m/z 286, 358 and 481 after non-derivatization, trimethylsilylation and pentafluorobenzyl oxime formation, respectively.ResultsWe tentatively identified novel decarbonylated metabolites of CBD as keto-enol tautomers. Among eight major recombinant human CYP enzymes, only CYP3A4 catalyzed the formation of decarbonylated metabolites.ConclusionsCBD was biotransformed to two decarbonylated metabolites, an enol-form (cyclopentadienol structure), and a keto-form (cyclopentenone structure) by human liver microsomes and CYP3A4.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 50 条
  • [41] Cytochrome p450 specificity of metabolism and interactions of oxybutynin in human liver microsomes
    Lukkari, E
    Taavitsainen, P
    Juhakoski, A
    Pelkonen, O
    PHARMACOLOGY & TOXICOLOGY, 1998, 82 (04): : 161 - 166
  • [42] Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes
    Facciolá, G
    Hidestrand, M
    von Bahr, C
    Tybring, G
    EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 2001, 56 (12) : 881 - 888
  • [43] In vitro metabolism of nonane by human liver microsomes and cytochrome P450 isoforms
    Edwards, JE
    Rose, RL
    Hodgson, E
    DRUG METABOLISM REVIEWS, 2004, 36 : 156 - 156
  • [44] Cytochrome P450 isoforms involved in melatonin metabolism in human liver microsomes
    Gabriella Facciolá
    Mats Hidestrand
    Christer von Bahr
    Gunnel Tybring
    European Journal of Clinical Pharmacology, 2001, 56 : 881 - 888
  • [45] In vitro metabolism of clomethiazole by human liver microsomes and human cytochrome P450 isoforms
    Hagbjörk, AL
    Ågren, J
    Andersson, A
    Terelius, Y
    DRUG METABOLISM REVIEWS, 2003, 35 : 121 - 121
  • [46] In vitro metabolism of bepridil by human liver microsomes and human cytochrome P450 isoforms
    Gopaul, VS
    Baumgardner, DL
    Wu, WN
    Streeter, AJ
    DRUG METABOLISM REVIEWS, 2004, 36 : 208 - 208
  • [47] In vitro metabolism of alachlor by human liver microsomes and human cytochrome P450 isoforms
    Coleman, S
    Liu, SM
    Linderman, R
    Hodgson, E
    Rose, RL
    CHEMICO-BIOLOGICAL INTERACTIONS, 1999, 122 (01) : 27 - 39
  • [48] Stereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms
    Lee, Hwa-Kyung
    Moon, Joon-Kwan
    Chang, Chul-Hee
    Choi, Hoon
    Park, Hee-Won
    Park, Byeoung-Soo
    Lee, Hye-Suk
    Hwang, Eul-Chul
    Lee, Young-Deuk
    Liu, Kwang-Hyeon
    Kim, Jeong-Han
    DRUG METABOLISM AND DISPOSITION, 2006, 34 (07) : 1090 - 1095
  • [49] Stereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms
    Lee, Hwa-Gyung
    Kim, Jeong-Han
    Moon, Joon-Kwan
    Chang, Chul-Hee
    Choi, Hoon
    Park, Hee-Won
    Park, Byeong-Soo
    Hwang, Eul-Chul
    Lee, Hye-Suk
    Lee, Young-Deuk
    Liu, Kwang-Hyeon
    DRUG METABOLISM REVIEWS, 2006, 38 : 186 - 186
  • [50] RETRACTED ARTICLE: Identification of CYP3A4 as the primary cytochrome P450 responsible for the metabolism of tandospirone by human liver microsomes
    Kiyohi Natsui
    Yoshiko Mizuno
    Naoko Tani
    Masashi Yabuki
    Setsuko Komuro
    European Journal of Drug Metabolism and Pharmacokinetics, 2007, 32 : 131 - 137