Effect of Tidal Zone and Seawater Attack on Alkali Activated Blended Slag Pastes

被引:4
|
作者
Rashad, Alaa M. [1 ]
Mosleh, Youssef A. [1 ]
机构
[1] Housing & Bldg Natl Res Ctr HBRC, Bldg Mat Res & Qual Control Inst, Cairo, Egypt
关键词
alkali-activated slag (AAS); fly ash; marine environment; quartz powder; silica fume; strength deterioration ratio; tidal zone; FLY-ASH; QUARTZ-POWDER; SILICA FUME; CEMENTITIOUS MATERIALS; STRUCTURAL CONCRETE; GEOPOLYMER CONCRETE; STEEL CORROSION; DURABILITY; MORTARS; MICROSTRUCTURE;
D O I
10.14359/51734355
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The marine environment has a significant deterioration effect on building materials. Among the different zones of the marine environment, the tidal zone has the highest deterioration. The current paper is the first attempt to study the effect of different treatment conditions-water curing, air curing, seawater curing, and simulated tidal zone-on the compressive strength and microstructure properties of alkali-activated slag (AAS) pastes without or with different mineral admixtures over different periods. Slag was partially replaced with 5 and 10% of different mineral admixtures-fly ash (FA), silica fume (SF), and quartz powder (Q)-by weight. After initial curing, the specimens were subjected to altered treatment conditions for 3, 6, and 12 months (M). The crystalline phases, microstructure analysis, and energy-dispersive X-ray spectra (EDS) of the selected samples were analyzed. The results indicated that the tidal zone has the highest aggressive deterioration on the specimens, followed by those exposed to seawater attack (submerged in seawater). The specimens cured in water exhibited the highest compressive strength, followed by those cured in air. The specimens containing Q showed the best performance, followed by those containing SF and FA, respectively, while the plain AAS pastes came in last place.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 50 条
  • [41] MICROSTRUCTURAL PROPERTIES OF ALKALI ACTIVATED SLAG AND ORDINARY PORTLAND CEMENT PASTES
    Cihangir, Ferdi
    NANO, BIO AND GREEN - TECHNOLOGIES FOR A SUSTAINABLE FUTURE CONFERENCE PROCEEDINGS, SGEM 2016, VOL II, 2016, : 165 - 172
  • [42] Study on carbonation process of alkali-activated slag cement pastes
    He, Juan
    Yang, Changhui
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39 (05): : 29 - 33
  • [43] Study on rheological behavior of alkali activated carbonatite-slag pastes
    Wang, X. P.
    Yin, S. H.
    Zhao, S. Y.
    Wu, Q. R.
    Yu, Q. J.
    Wen, Z. Y.
    PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CEMENT & CONCRETE AND CANMET/ACI INTERNATIONAL SYMPOSIUM ON CONCRETE TECHNOLOGY FOR SUSTAINABLE DEVELOPMENT, VOLS 1 AND 2, 2006, : 705 - 711
  • [44] Durability of Alkali-Activated Slag Cement in Seawater Environment
    Gu, Yamin
    Fang, Yonghao
    TRENDS IN BUILDING MATERIALS RESEARCH, PTS 1 AND 2, 2012, 450-451 : 778 - 781
  • [45] Innovative Use of Sugarcane Bagasse Ash in Green Alkali-Activated Slag Material: Effects of Activator Concentration on the Blended Pastes
    Sheen, Yeong-Nain
    Duc-Hien Le
    SUGAR TECH, 2022, 24 (04) : 1037 - 1051
  • [46] Innovative Use of Sugarcane Bagasse Ash in Green Alkali-Activated Slag Material: Effects of Activator Concentration on the Blended Pastes
    Yeong-Nain Sheen
    Duc-Hien Le
    Sugar Tech, 2022, 24 : 1037 - 1051
  • [47] Studying the effect of alkali dosage on microstructure development of alkali-activated slag pastes by electrical impedance spectroscopy (EIS)
    Hu, Xiang
    Shi, Caijun
    Liu, Xiaojin
    Zhang, Zuhua
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 261
  • [48] Influence of activator type and slag volume fraction on properties of alkali-activated slag pastes
    Hajzler, J.
    Bilek, V., Jr.
    Kotrla, J.
    Kucharczykova, B.
    INTERNATIONAL CONFERENCE BUILDING MATERIALS, PRODUCTS AND TECHNOLOGIES, ICBMPT 2022, 2022, 2341
  • [49] SODIUM SULPHATE ATTACK ON ALKALI-ACTIVATED SLAG MORTAR
    Allahverdi, Ali
    Hashemi, Hamideh
    NON-TRADITIONAL CEMENT & CONCRETE IV, 2011, : 581 - 589
  • [50] MAGNESIUM SULPHATE ATTACK ON ALKALI-ACTIVATED SLAG MORTAR
    Allahverdi, Ali
    Hashemi, Hamideh
    NON-TRADITIONAL CEMENT & CONCRETE IV, 2011, : 590 - 598