A knowledge-based approach for discriminating multi-crop scenarios using multi-temporal polarimetric SAR parameters

被引:7
|
作者
Chirakkal, S. [1 ]
Haldar, D. [1 ]
Misra, A. [1 ]
机构
[1] Indian Space Res Org, Space Applicat Ctr, Adv Microwave & Hyperspectral Tech Dev Grp, Ahmadabad 380015, Gujarat, India
关键词
CLASSIFICATION; MULTIFREQUENCY; ENTROPY; FOREST; CROPS;
D O I
10.1080/01431161.2018.1558304
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this article, we evaluate a series of POLSAR (Polarimetric Synthetic Aperture Radar) parameters and devise a robust, multi-date, and hierarchical decision tree algorithm for crop discrimination. The study area is a farmland in North India having relatively large patches of winter crops with medium heterogeneity. Ten POLSAR parameters are evaluated for this work including polarimetric entropy (), polarimetric alpha angle (), Yamaguchi decomposition components, radar vegetation index (RVI), volume scattering index, canopy scattering index, biomass index, and pedestal height (PH). We choose polarimetric RVI, polarimetric entropy, and polarimetric alpha angle parameter, after sensitivity analysis, to be incorporated into building the multi-temporal POLSAR decision tree. The proposed algorithm accepts, as input, a precisely co-registered multi-date stack of fully POLSAR imagery. The algorithm makes use of the temporal profiles of the selected POLSAR parameters in achieving the crop discrimination. We provide a quantitative assessment of classification accuracy of various classes based on extensive ground truth data. The multi-temporal algorithm is compared with the well-established, single-date, supervised Wishart classifier. Statistically significant improvement of accuracies is observed across various classes as compared to single-date methodology. Our study suggests that whenever ground truth data are extensively available, a supervised classifier based on carefully chosen multi-temporal POLSAR parameters yield very compelling crop discrimination capabilities.
引用
收藏
页码:4002 / 4018
页数:17
相关论文
共 50 条
  • [31] Crop Classification Using Multi-Temporal RADARSAT Constellation Mission Compact Polarimetry SAR Data
    Farhadiani, Ramin
    Homayouni, Saeid
    Bhattacharya, Avik
    Mahdianpari, Masoud
    CANADIAN JOURNAL OF REMOTE SENSING, 2024, 50 (01)
  • [32] Deep learning based multi-temporal crop classification
    Zhong, Liheng
    Hu, Lina
    Zhou, Hang
    REMOTE SENSING OF ENVIRONMENT, 2019, 221 : 430 - 443
  • [33] Urban monitoring using multi-temporal SAR and multi-spectral data
    Gomez-Chova, L
    Fernández-Prieto, D
    Calpe, J
    Soria, E
    Vila, J
    Camps-Valls, G
    PATTERN RECOGNITION LETTERS, 2006, 27 (04) : 234 - 243
  • [34] ASSESSMENT OF MULTI-TEMPORAL CAPELLA SAR DATA FOR CHANGE DETECTION AND CROP MONITORING
    Cazcarra-Bes, Victor
    Busquier, Mario
    Lopez-Sanchez, Juan M.
    Duersch, Michael
    De, Shaunak
    Stringham, Craig
    Castelleti, Davide
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3410 - 3413
  • [35] Fine Classification of Rice Paddy Based on RHSI-DT Method Using Multi-Temporal Compact Polarimetric SAR Data
    Guo, Xianyu
    Yin, Junjun
    Li, Kun
    Yang, Jian
    REMOTE SENSING, 2021, 13 (24)
  • [36] Monitoring terrain deformations using multi-temporal SAR images
    Ferretti, A
    Prati, C
    Rocca, F
    CEOS SAR WORKSHOP, 2000, 450 : 15 - 18
  • [37] Discrimination of glacier facies using multi-temporal SAR data
    Partington, KC
    JOURNAL OF GLACIOLOGY, 1998, 44 (146) : 42 - 53
  • [38] An unsupervised approach based on Riemannian metric to change detection on multi-temporal SAR images
    Li, Na
    Liu, Fang
    Chen, Zengping
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX, 2014, 9244
  • [39] Deep Learning-Based Estimation of Crop Biophysical Parameters Using Multi-Source and Multi-Temporal Remote Sensing Observations
    Bahrami, Hazhir
    Homayouni, Saeid
    Safari, Abdolreza
    Mirzaei, Sayeh
    Mahdianpari, Masoud
    Reisi-Gahrouei, Omid
    AGRONOMY-BASEL, 2021, 11 (07):
  • [40] Fine classification and phenological analysis of rice paddy based on multi-temporal general compact polarimetric SAR data
    Guo, Xianyu
    Yin, Junjun
    Li, Kun
    Yang, Jian
    FRONTIERS IN PLANT SCIENCE, 2024, 15