Homogeneity Test of Multi-Sample Covariance Matrices in High Dimensions

被引:0
|
作者
Sun, Peng [1 ,2 ,3 ]
Tang, Yincai [1 ,2 ]
Cao, Mingxiang [4 ]
机构
[1] East China Normal Univ, Dept Stat, Shanghai 200062, Peoples R China
[2] East China Normal Univ, Sch Stat, KLATASDS MOE, Shanghai 200062, Peoples R China
[3] Duke NUS Med Sch, Ctr Quantitat Med, Singapore 169857, Singapore
[4] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Anhui, Peoples R China
关键词
high-dimensional data; weighted Frobenius norm; homogeneity test; martingale central limit theorem; asymptotic distributions; CLASSIFICATION; EQUALITY;
D O I
10.3390/math10224339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new test statistic based on the weighted Frobenius norm of covariance matrices is proposed to test the homogeneity of multi-group population covariance matrices. The asymptotic distributions of the proposed test under the null and the alternative hypotheses are derived, respectively. Simulation results show that the proposed test procedure tends to outperform some existing test procedures.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] HOMOGENEITY TESTS FOR HIGH-DIMENSIONALMEAN VECTORS AND COVARIANCE MATRICES
    Guo, Wenwen
    Song, Xinyuan
    Cui, Hengjian
    STATISTICA SINICA, 2024, 34 (04) : 1997 - 2014
  • [22] An uniformly superior exact multi-sample test procedure for homogeneity of variances under location-scale family of distributions
    Patil, K. P.
    Kulkarni, H. V.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (18) : 3931 - 3957
  • [23] A NOTE ON HOMOGENEITY TESTS OF COVARIANCE MATRICES
    RUYMGAART, FH
    SMITH, WB
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1989, 18 (06) : 2301 - 2310
  • [24] Testing simultaneously different covariance block diagonal structures - the multi-sample case
    Marques, F. J.
    Coelho, C. A.
    JOURNAL OF APPLIED STATISTICS, 2020, 47 (13-15) : 2765 - 2784
  • [25] MULTI-SAMPLE ELECTROPORATION
    SPEYER, JF
    BIOTECHNIQUES, 1990, 8 (05) : 508 - 508
  • [26] Large covariance matrices: Estimation and inference in high dimensions
    Johnstone, Iain M.
    Contributions to Probability and Statistics: Applications and Challenges, 2006, : 301 - 301
  • [27] Bootstrap approach to the multi-sample test of means with imprecise data
    Angeles Gil, Maria
    Montenegro, Manuel
    Gonzalez-Rodriguez, Gil
    Colubi, Ana
    Casals, Maria Rosa
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (01) : 148 - 162
  • [28] Double verification for two-sample covariance matrices test
    Sun, Wenming
    Lyu, Lingfeng
    Guo, Xiao
    STAT, 2024, 13 (02):
  • [29] A HOMOGENEITY TEST OF LARGE DIMENSIONAL COVARIANCE MATRICES UNDER NON-NORMALITY
    Ahmad, M. Rauf
    KYBERNETIKA, 2018, 54 (05) : 908 - 920
  • [30] A Two Sample Test for Mean Vectors with Unequal Covariance Matrices
    Kawasaki, Tamae
    Seo, Takashi
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (07) : 1850 - 1866