On the Spectrum of Mutually r-orthogonal Idempotent Latin Squares

被引:0
|
作者
Xu, Yun-qing [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Latin square; r-orthogonal; idempotent;
D O I
10.1007/s10255-015-0507-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two Latin squares of order v are r-orthogonal if their superposition produces exactly r distinct ordered pairs. The two squares are said to be r-orthogonal idempotent Latin squares and denoted by r-MOILS(v) if they are all idempotent. In this paper, we show that for any integer v >= 28, there exists an r-MOILS(v) if and only if r is an element of [v, v(2)] \ {v + 1, v(2) - 1}.
引用
收藏
页码:813 / 822
页数:10
相关论文
共 50 条
  • [21] EXTENDING MUTUALLY ORTHOGONAL PARTIAL LATIN SQUARES
    LINDNER, CC
    ACTA SCIENTIARUM MATHEMATICARUM, 1971, 32 (3-4): : 283 - &
  • [22] Enumerating extensions of mutually orthogonal Latin squares
    Simona Boyadzhiyska
    Shagnik Das
    Tibor Szabó
    Designs, Codes and Cryptography, 2020, 88 : 2187 - 2206
  • [23] Mutually Orthogonal Sudoku Latin Squares and Their Graphs
    Kubota, Sho
    Suda, Sho
    Urano, Akane
    GRAPHS AND COMBINATORICS, 2023, 39 (06)
  • [24] ON A CERTAIN CONSTRUCTION OF MUTUALLY ORTHOGONAL LATIN SQUARES
    BERESINA, LJ
    BEREZINA, MT
    ARS COMBINATORIA, 1990, 29A : 199 - 200
  • [25] Mutually Orthogonal Latin Squares as Group Transversals
    Pradhan, Rohitesh
    Jain, Vivek Kumar
    DISCRETE MATHEMATICS AND APPLICATIONS, 2023, 33 (02): : 99 - 103
  • [26] Parity of sets of mutually orthogonal Latin squares
    Francetic, Nevena
    Herke, Sarada
    Wanless, Ian M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 155 : 67 - 99
  • [27] THE MAXIMUM NUMBER OF MUTUALLY ORTHOGONAL LATIN SQUARES
    陆鸣皋
    Science Bulletin, 1985, (02) : 154 - 159
  • [28] CONCERNING NUMBER OF MUTUALLY ORTHOGONAL LATIN SQUARES
    WILSON, RM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 805 - &
  • [29] Mutually Orthogonal Sudoku Latin Squares and Their Graphs
    Sho Kubota
    Sho Suda
    Akane Urano
    Graphs and Combinatorics, 2023, 39
  • [30] Concerning eight mutually orthogonal Latin squares
    Abel, R. Julian R.
    Cavenagh, Nicholas
    JOURNAL OF COMBINATORIAL DESIGNS, 2007, 15 (03) : 255 - 261