A Maple package for computing Grobner bases for linear recurrence relations

被引:14
|
作者
Gerdt, VP
Robertz, D
机构
[1] Rhein Westfal TH Aachen, Lehhstuhl B Math, D-52062 Aachen, Germany
[2] Joint Inst Nucl Res, Informat Technol Lab, Dubna 141980, Russia
基金
俄罗斯基础研究基金会;
关键词
difference algebra; Grobner bases; Janet-like bases; recurrence relations; difference scheme; Feynman integral; Maple;
D O I
10.1016/j.nima.2005.11.171
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A Maple package for computing Grobner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two possible applications are illustrated by simple examples of the Laplace equation and a one-loop scalar integral of propagator type. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 219
页数:5
相关论文
共 50 条
  • [31] On computation of Grobner bases for linear difference systems
    Gerdt, VP
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 559 (01): : 211 - 214
  • [32] An Extended S-polynomial for Computing Grobner Bases
    He, Jinao
    Zhong, Xiuqin
    2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA), 2013, : 738 - 740
  • [33] ON THE COMPLEXITY OF COMPUTING GROBNER BASES IN CHARACTERISTIC-2
    ACCIARO, V
    INFORMATION PROCESSING LETTERS, 1994, 51 (06) : 321 - 323
  • [34] Role of Involutive Criteria in Computing Boolean Grobner Bases
    Gerdt, V. P.
    Zinin, M. V.
    PROGRAMMING AND COMPUTER SOFTWARE, 2009, 35 (02) : 90 - 97
  • [35] Computing strong regular characteristic pairs with Grobner bases
    Dong, Rina
    Wang, Dongming
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 104 : 312 - 327
  • [36] On the complexity of computing Grobner bases for weighted homogeneous systems
    Faugere, Jean-Charles
    El Din, Mohab Safey
    Verron, Thibaut
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 76 : 107 - 141
  • [37] Computing the Dixon Resultant with the Maple Package DR
    Minimair, Manfred
    APPLICATIONS OF COMPUTER ALGEBRA, 2017, 198 : 273 - 287
  • [38] On a Grobner bases structure associated to linear codes
    Borges-Quintana, M.
    Borges-Trenard, M. A.
    Martinez-Moro, E.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (02): : 151 - 191
  • [39] Pivoting in Extended Rings for Computing Approximate Grobner Bases
    Faugere, Jean-Charles
    Liang, Ye
    MATHEMATICS IN COMPUTER SCIENCE, 2011, 5 (02) : 179 - 194
  • [40] Structures of precision losses in computing approximate Grobner bases
    Liang, Ye
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 53 : 81 - 95