NUMERICAL SIMULATION OF TIME VARIABLE FRACTIONAL ORDER MOBILE-IMMOBILE ADVECTION-DISPERSION MODEL

被引:0
|
作者
Abdelkawy, M. A. [1 ]
Zaky, M. A. [2 ]
Bhrawy, A. H. [3 ,4 ]
Baleanu, D. [5 ,6 ]
机构
[1] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf 62511, Egypt
[2] Natl Res Ctr, Dept Theoret Phys, Cairo, Egypt
[3] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[4] Beni Suef Univ, Fac Sci, Bani Suwayf 62511, Egypt
[5] Cankaya Univ, Dept Math & Comp Sci, TR-06810 Ankara, Turkey
[6] Inst Space Sci, RO-077125 Magurele, Romania
关键词
mobile-immobile advection-dispersion equation; collocation method; Jacobi-Gauss-Lobatto quadrature; Jacobi-Gauss-Radau quadrature; Coimbra fractional derivative; LOBATTO COLLOCATION METHOD; DIFFUSION EQUATION; APPROXIMATION; CONVERGENCE; TRANSPORT; SYSTEM; SCHEME;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper reports a novel numerical technique for solving the time variable fractional order mobile-immobile advection-dispersion (TVFO-MIAD) model with the Coimbra variable time fractional derivative, which is preferable for modeling dynamical systems. The main advantage of the proposed method is that two different collocation schemes are investigated for both temporal and spatial discretizations of the TVFO-MIAD model. The problem with its boundary and initial conditions is then reduced to a system of algebraic equations that is far easier to be solved. Numerical results are consistent with the theoretical analysis and indicate the high accuracy and effectiveness of this algorithm.
引用
收藏
页码:773 / 791
页数:19
相关论文
共 50 条
  • [41] Numerical solution of variable fractional order advection-dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative
    Soltanpour Moghadam, Abolfazl
    Arabameri, Maryam
    Baleanu, Dumitru
    Barfeie, Mahdiar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 3936 - 3953
  • [42] Application of a Legendre collocation method to the space-time variable fractional-order advection-dispersion equation
    Mallawi, F.
    Alzaidy, J. F.
    Hafez, R. M.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 324 - 330
  • [43] Numerical treatment of the space fractional advection-dispersion model arising in groundwater hydrology
    Mesgarani, H.
    Rashidinia, J.
    Aghdam, Y. Esmaeelzade
    Nikan, O.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (01):
  • [44] The time fractional diffusion equation and the advection-dispersion equation
    Huang, F
    Liu, F
    ANZIAM JOURNAL, 2005, 46 : 317 - 330
  • [45] A novel numerical approximation for the space fractional advection-dispersion equation
    Shen, S.
    Liu, F.
    Anh, V.
    Turner, I.
    Chen, J.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2014, 79 (03) : 431 - 444
  • [46] An Efficient QSC Approximation of Variable-Order Time-Fractional Mobile-Immobile Diffusion Equations with Variably Diffusive Coefficients
    Jun Liu
    Hongfei Fu
    Journal of Scientific Computing, 2022, 93
  • [47] An Efficient QSC Approximation of Variable-Order Time-Fractional Mobile-Immobile Diffusion Equations with Variably Diffusive Coefficients
    Liu, Jun
    Fu, Hongfei
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (02)
  • [48] Numerical methods and analysis for a class of fractional advection-dispersion models
    Liu, F.
    Zhuang, P.
    Burrage, K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 2990 - 3007
  • [49] Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection-diffusion model
    Yu, Bo
    Jiang, Xiaoyun
    Qi, Haitao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1131 - 1150
  • [50] Legendre Polynomials and Techniques for Collocation in the Computation of Variable-Order Fractional Advection-Dispersion Equations
    Khalid, Thwiba A.
    Alnoor, Fatima
    Babeker, Ebtesam
    Ahmed, Ehssan
    Mustafa, Alaa
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22