Validated Variational Inference via Practical Posterior Error Bounds

被引:0
|
作者
Huggins, Jonathan H. [1 ]
Kasprzak, Mikolaj [2 ]
Campbell, Trevor [3 ]
Broderick, Tamara [4 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Univ Luxembourg, Luxembourg, Luxembourg
[3] Univ British Columbia, Vancouver, BC, Canada
[4] MIT, Cambridge, MA 02139 USA
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108 | 2020年 / 108卷
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
WASSERSTEIN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational inference has become an increasingly attractive fast alternative to Markov chain Monte Carlo methods for approximate Bayesian inference. However, a major obstacle to the widespread use of variational methods is the lack of post-hoc accuracy measures that are both theoretically justified and computationally efficient. In this paper, we provide rigorous bounds on the error of posterior mean and uncertainty estimates that arise from full-distribution approximations, as in variational inference. Our bounds are widely applicable, as they require only that the approximating and exact posteriors have polynomial moments. Our bounds are also computationally efficient for variational inference because they require only standard values from variational objectives, straightforward analytic calculations, and simple Monte Carlo estimates. We show that our analysis naturally leads to a new and improved workflow for validated variational inference. Finally, we demonstrate the utility of our proposed workflow and error bounds on a robust regression problem and on a real-data example with a widely used multilevel hierarchical model.
引用
收藏
页码:1792 / 1801
页数:10
相关论文
共 50 条
  • [22] ERROR-BOUNDS ON VARIATIONAL MATRIX PADE APPROXIMANTS
    TURCHETTI, G
    LETTERE AL NUOVO CIMENTO, 1981, 31 (12): : 407 - 411
  • [23] Gap Functions and Error Bounds for Variational–Hemivariational Inequalities
    Nguyen Van Hung
    Stanislaw Migórski
    Vo Minh Tam
    Shengda Zeng
    Acta Applicandae Mathematicae, 2020, 169 : 691 - 709
  • [24] EXISTENCE AND ERROR BOUNDS OF STOCHASTIC DIFFERENTIAL VARIATIONAL INEQUALITIES
    Guan, Fei
    Van Thien Nguyen
    Peng, Zijia
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (10) : 2259 - 2276
  • [25] Gap functions and error bounds for quasi variational inequalities
    Rachana Gupta
    Aparna Mehra
    Journal of Global Optimization, 2012, 53 : 737 - 748
  • [26] A Practical Framework for Type Inference Error Explanation
    Loncaric, Calvin
    Chandra, Satish
    Schlesinger, Cole
    Sridharan, Manu
    ACM SIGPLAN NOTICES, 2016, 51 (10) : 781 - 799
  • [27] A practical framework for type inference error explanation
    Loncaric C.
    Chandra S.
    Schlesinger C.
    Sridharan M.
    1600, Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States (51): : 781 - 799
  • [28] Error Bounds for Inverse Mixed Quasi-Variational Inequality via Generalized Residual Gap Functions
    Zhang, Yinfeng
    Yu, Guolin
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2022, 39 (02)
  • [29] Gap Functions and Error Bounds for Variational-Hemivariational Inequalities
    Hung, Nguyen Van
    Migorski, Stanislaw
    Tam, Vo Minh
    Zeng, Shengda
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 691 - 709
  • [30] Gap functions and error bounds for weak vector variational inequalities
    Xu, Y. D.
    Li, S. J.
    OPTIMIZATION, 2014, 63 (09) : 1339 - 1352